尹 磊,欧勇盛,江国来,彭建盛.低成本激光和视觉相结合的同步定位与建图研究[J].集成技术,2019,8(2):11-22
低成本激光和视觉相结合的同步定位与建图研究
Research on Simultaneous Localization and Mapping Fusion withLow-Cost Laser Sensors and Vision
  
DOI:10.12146/j.issn.2095-3135.20180717001
中文关键词:  机器人;非线性优化;同步定位与地图构建;稀疏姿态调整
英文关键词:robot; nonlinear optimization; simultaneous localization and mapping; sparse pose adjustment
基金项目:国家自然科学基金项目(U1613210);深圳市基础研究计划项目(JCYJ20170413165528221)
作者单位
尹 磊 广西科技大学电气与信息工程学院 柳州 545006;中国科学院深圳先进技术研究院 深圳 518055 
欧勇盛 中国科学院深圳先进技术研究院 深圳 518055 
江国来 中国科学院深圳先进技术研究院 深圳 518055;中国科学院大学深圳先进技术学院 深圳 518055 
彭建盛 广西科技大学电气与信息工程学院 柳州 545006;河池学院物理与机电工程学院 宜州 546300 
摘要点击次数: 134
全文下载次数: 724
中文摘要:
      激光雷达和视觉传感是目前两种主要的服务机器人定位与导航技术,但现有的低成本激光雷 达定位精度较低且无法实现大范围闭环检测,而单独采用视觉手段构建的特征地图又不适用于导航应用。因此,该文以配备低成本激光雷达与视觉传感器的室内机器人为研究对象,提出了一种激光和视觉相结合的定位与导航建图方法:通过融合激光点云数据与图像特征点数据,采用基于稀疏姿态调整的优化方法,对机器人位姿进行优化。同时,采用基于视觉特征的词袋模型进行闭环检测,并进一步优化基于激光点云的栅格地图。真实场景下的实验结果表明,相比于单一的激光或视觉定位建图方 法,基于多传感器数据融合的方法定位精度更高,并有效地解决了闭环检测问题。
英文摘要:
      Laser lidar and vision sensors are the two mainstream three-dimensional sensing techniques in the applications of robot location and navigation. However, existing low-cost laser lidar usually has low location accuracy and cannot achieve loop closure detection in large areas. In this paper, an indoor robot equipped with low-cost laser lidar and camera was used for experiment. And a novel localization and mapping method was introduced by combing both lidar and image information. An optimization method based on sparse pose adjustment was used to optimize the robot pose by fusing laser points cloud and image feature points as constraints. At the same time, the bag of words model based on visual features was used for loop closure detection. The grid map was optimized by loop closure constraints. Real experimental results show that, the proposed method has better localization accuracy than either laser lidar or vision sensors, and loop closure detection also can be realized.
查看全文  查看/发表评论  下载PDF阅读器
关闭
微信关注二维码 用微信扫一扫

美女

美女图片

美女

美女图片