一种基于分块主成分分析的存储器容错方法研究
一种基于分块主成分分析的存储器容错方法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(61267002、41271362);深圳市科技基金资助项目(JCYJ20160510154531467);深圳市自动驾驶感知决策与 控制工程实验室(Y7D0041001)

伦理声明:



A Fault-Tolerant Method Based on Modular Principal Component Analysis for Memory
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着集成电路工艺水平提升,半导体器件尺寸越来越小,存储器更易受到周围环境的影响而导致数据存储故障。针对这一问题,该文提出了一种基于分块主成分分析的存储器容错方法。该方法应用分块主成分分析算法提取数据的主要特征,并对求取的特征数据作均值化处理,得到原始数据的最佳近似估计。该最佳近似估计可对数据中的任意故障做容错替换,使容错替换后的数据和原始数据的误差最小。实验结果表明,该方法可以使图片数据在 0.003 5 错误率的情况下仍保持峰值信噪比大于 30 dB;与传统纠错码相比,执行时间缩短了约 40%,内存消耗减少了约 12%,获得了较好的容错效果。

    Abstract:

    With the improvement of integrated circuit manufacturing technology, the size of electronic components is shrinking accordingly. And that makes the memory components more susceptible to working environment. To solve this problem, this paper presents a memory fault tolerance method based on modular principal component analysis (PCA). Main features of the data were obtained via modular PCA firstly. Then, the feature data is averaged to obtain the best available estimate of the original data. This best available estimate can be used to make fault-tolerant replacements for any faults in the data, minimizing the sum of the squared errors of the fault-tolerant replaced data and the original data. Finally, using the reconstructed block data, fault-tolerant replacement of the erroneous data in the original data block can be performed. The experimental results show that the picture data can keep a peak signal to noise ratio of more than 30 dB under 0.003 5 error rate. In comparison with conventional error correcting code approach, the execution time can be reduced about 40%, and the memory occupancy can be reduced about 12%.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
方嘉言,邵翠萍,李慧云.一种基于分块主成分分析的存储器容错方法研究 [J].集成技术,2018,7(6):49-59

Citing format
FANG Jiayan, SHAO Cuiping, LI Huiyun. A Fault-Tolerant Method Based on Modular Principal Component Analysis for Memory[J]. Journal of Integration Technology,2018,7(6):49-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-20
  • 出版日期: