电化学蚀刻钽箔制备高容量薄膜钽电解电容器

郭永富1,2,3† 王日明1,2† 于淑会1,2* 初宝进4 孙蓉1,2

1(深圳先进电子材料国际创新研究院 深圳 518103)
2(中国科学院深圳先进技术研究院 深圳 518055)
3(中国科学技术大学纳米科学技术学院 苏州 215123)
4(中国科学技术大学 中国科学院能量转换材料重点实验室 合肥 230026)

† These authors contribute equally to this work
*Corresponding Author: sh.yu@siat.ac.cn

摘 要 钽电解电容器具有较高的电容密度和较好的稳定性，将钽电解电容器制备成埋入式电容能够扩展钽电容的应用。传统钽电容经钽粉压块、烧结、被膜等工艺制作而成，其具有较大的尺寸而不能被埋入到电路板或者基板内部。该研究探索了电化学蚀刻钽箔的方法来制作钽电解电容器阳极并进一步制作成片状埋入式钽电解电容器。在0.1 mol/L稀硫酸水溶液中测试经蚀刻并氧化后的钽箔阳极，得到最大比电容为74 nF/mm²。将该钽箔阳极制备成钽电解电容器件，测试结果显示电容器件在100 Hz～1 MHz的电容值＞30 nF/mm²；持续施加10 V直流电压1200 s，其漏电流最大为2.7×10⁻⁶ A，薄膜电容的总厚度约为75 μm。

关键词 埋入式电容；钽电解电容器；电化学蚀刻；高容量

中图分类号 TM 535.1 文献标志码 A doi: 10.12146/j.issn.2095-3135.20201119001

High-Capacitance Thin Film Tantalum Electrolytic Capacitor Fabricated from Electrochemically Etched Tantalum Foils

GUO Yongfu1,2,3† WANG Riming1,2† YU Shuhui1,2* CHU Baojin4 SUN Rong1,2

1(Shenzhen Institute of Advanced Electronic Materials, Shenzhen 518103, China)
2(Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)
3(Institute of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, China)
4(CAS Key Lab Mat Energy Convers, University of Science and Technology of China, Hefei 230026, China)

† These authors contribute equally to this work
*Corresponding Author: sh.yu@siat.ac.cn
Abstract The use of Tantalum (Ta) electrolytic capacitors as embedded components constitutes a promising strategy to extend the application of embedded capacitors, because Ta electrolytic capacitor can provide both high capacitance and excellent stability. However, the huge thickness of conventional Ta electrolytic capacitor makes it hard to be embedded in a printed circuit board or substrate. In this work, we propose to employ the electrochemical etching of thin Ta foils to fabricate the anode of Ta electrolytic capacitors for embedded application. The specific capacitance of electrochemically etched Ta anode reaches as high as 74 nF/mm2 when measured in 0.1 mol/L H$_2$SO$_4$. The etched Ta anode is then fabricated into electrolytic capacitors, and a stable capacitance of $>$30 nF/mm2 is demonstrated in the frequency range from 100 Hz to 1 MHz and a low leakage current of 2.7×10^{-6} A for a duration of 1200 seconds at a direct voltage (DC) of 10 V. The whole thickness of the capacitor is decreased to~75 μm.

Keywords embedded capacitor; Tantalum electrolytic capacitor; electrochemical etching; high capacitance

Funding This work is supported by the National Key R & D Project from Minister of Science and Technology of China (2017YFB0406300)

1 Introduction

Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area.

Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density ICs. However, the current commercial embedded capacitors with BaTiO$_3$ filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of $<$0.1 nF/mm2, which hinders its wide application. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is...

Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors

图 1 埋入式电容与分立式薄膜电解电容对比图：(a) 商用铜/介电层/铜结构嵌入式电容器；(b) 分立薄膜电解电容器
put forward\cite{1}. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress\cite{12-16}. By comparison, Ta possesses a small thermal expansion coefficient\cite{17}, and tantalum pentoxide (Ta$_2$O$_5$) exhibits stable physical and chemical properties\cite{18}, which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system.

Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders\cite{19-20}, and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C\cite{21-25}. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture\cite{26}, and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained\cite{27-28}. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

$$C = \frac{\varepsilon_0 \varepsilon S}{d}$$

where ε is the permittivity of the dielectric ($\varepsilon = 25$ for the anodic oxide of Ta), $\varepsilon_0 = 8.85 \times 10^{-14}$ F/cm is the permittivity of free space, S is the surface area, and d is the dielectric thickness. Based on this equation, it is clear that large capacitance requires large S when d is fixed.

With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2 with an oxidation voltage of 12 V when measured in 0.1 mol/L H$_2$SO$_4$. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste\cite{29} in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2 over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10^{-6} A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

2 Experimental

2.1 Materials

Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H$_3$PO$_4$, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%)
was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

2.2 Electrochemical etching of Ta foils
Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm × 5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 °C, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

2.3 Oxidation (Ta₂O₅ formation)
The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H₃PO₄ aqueous solution at 80 °C.

2.4 Characterizations
The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm × 1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

2.5 Measurement of specific capacitance
The capacitance (C) was measured in 0.1 mol/L H₂SO₄ by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil.

![Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H₂SO₄, (b) and (d) measuring capacitance of tantalum capacitor](image-url)
on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

3 Results and Discussions

3.1 Physical characterizations of electrochemically etched Ta foils

The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate

![Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H](image)

图 3 不同蚀刻条件下得到的钽箔表面 SEM 图：(a) 无蚀刻, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, (e-f) Ta-80V2H
electrolytic capacitors.

The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine
Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta₂O₅ peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HF-etched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta₂O₅ observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in non-invasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

After electrochemical etching in HF electrolyte, the Ta₂O₅ is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta₂O₅ during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

\[
\begin{align*}
2\text{Ta} + 5\text{H}_2\text{O} & \rightarrow \text{Ta}_2\text{O}_5 + 10\text{e}^- + 10\text{H}^+ \\
\text{Ta}_2\text{O}_5 + 14\text{HF} & \rightarrow 2\text{TaF}_7^{2-} + 5\text{H}_2\text{O} + 4\text{H}^+
\end{align*}
\]

The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Elemental content (atom%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ta</td>
</tr>
<tr>
<td>Pristine Ta foil</td>
<td>41</td>
</tr>
<tr>
<td>Etched</td>
<td>40</td>
</tr>
<tr>
<td>Oxidized</td>
<td>39</td>
</tr>
</tbody>
</table>

Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper
slope with etching time than etching voltage.

3.2 Capacitance enhancement by electrochemical etching

The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate
the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness. The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material.
(Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of > 250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (< 10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of $\approx 10^{-6}$ A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz$^{[20]}$. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage.

As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10^{-6} A, which is slightly larger than that of the commercial capacitor.

The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ≈ 75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ≈ 1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ≈ 75 μm endows this Ta electrolytic capacitor configuration a promising

![Image]

Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor

图 10 钽薄膜电容器的实物图: (a) 片状钽电解电容器和薄膜钽电解电容器的尺寸; (b) 薄膜钽电解电容器的光学显微镜截面图; (c) 薄膜钽电解电容器的 SEM 截面图
potential for its application as embedded capacitors in IC industry.

3.4 Discussion and analysis

Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

4 Conclusions

In conclusion, we proposed the use of electrochemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2 in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10^{-6} A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

References

[10] Ho JS, Greenbaum SG. Polymer capacitor dielectrics for high temperature applications [J]. ACS Applied Materials & Interfaces, 2018,

