基于微流控技术实现严格厌氧条件下的细菌单细胞培养与实时观测
Bacterial Single-Cell Culture and Real Time Observation Under Strict Anaerobic Condition Based on Microfluidic Technology
-
摘要: 当下微生物研究存在两个趋势, 一是随着大量肠道微生物相关研究的开展, 研究者们越来越认识到肠道微生物尤其是大量厌氧菌与人类健康息息相关, 因为肠道本身在某种程度上也属于厌氧环境, 故对肠道细菌的细胞生理学研究需要建立在厌氧培养环境的基础之上;二是仅依靠经典的微生物群体培养方法已经难以满足对细胞异质性的研究, 需要发展多种方法在单细胞水平进行细菌生理学研究, 以此深入研究被细胞群体所掩盖而被研究者忽略的生理规律。该研究开发了一种微生物在厌氧条件下的培养方法, 包括相关培养装置设计与相应的实验方法流程, 在稳定维持培养环境严格厌氧程度的基础上, 使用微流控芯片对细菌进行长时间的单细胞培养, 同时结合高分辨率显微镜延时成像技术, 在培养的同时实现对生长动态的实时观测与数据采集。该方法为细菌细胞在厌氧条件下的单细胞分析提供了有力的技术支持。Abstract: There are two trends in current microbiological research. First, researchers have increasingly realized that intestinal microbes, especially a large number of anaerobic bacteria, are closely related to human health with the development of intestinal microbe-related research. Because the intestine itself belongs to an anaerobic environment to a certain extent, the cell physiology research of intestinal bacteria needs to be based on the anaerobic culture environment. Second, it is difficult to meet the requirements of cell heterogeneity only by relying on classical microbial population culture methods. Research on heterogeneity requires the development of methods to study bacterial physiology at the single-cell level for in-depth study of the physiological laws that are hidden by cell populations and ignored by researchers. Here, a method is developed for culturing bacteria under anaerobic conditions, including the design of related culturing equipment and corresponding experimental procedures. Based on stably maintaining the strict anaerobic condition of the culture environment, the microfluidic chip is used to long-term singlecell culture. Combined with high-resolution microscope time-lapse imaging technology, the real-time observation and data collection of growth dynamics of single bacterial cell can be realized. This method provides powerful technical support for single-cell analysis of bacterial cells under anaerobic conditions.