时空数据驱动的智能家居服务管控方法
A Spatio-Temporal Data-Driven Control Method for Smart Home Service
-
摘要: 针对目前智能家居服务管控技术存在的标准缺失和用户需求多样化问题, 作者提出一种时空数据驱动的智能家居服务管控方法。该方法包括构建智能家居时序知识图谱和基于联邦学习的智能家居服务管控方法。通过记录智能家居场景中概念实例的状态, 时序知识图谱提供了环境变化和服务状态的时序数据支持。通过联邦学习算法, 结合不同家庭的模型参数, 该方法可更新个性化模型和预测智能家居服务状态。实验结果表明, 该方法可有效管控智能家居设备, 并可准确满足用户需求, 具有高准确度和较快的收敛速度。Abstract: Addressing the current issues of lacking standards and diverse user demands in smart home service management, this paper proposes a spatio-temporal data-driven control method for smart home service. The method involves constructing a temporal knowledge graph for smart home and utilizing a federated learningbased approach for smart home service management. By capturing the state of concept instances in smart home scenarios, the temporal knowledge graph provides temporal data on environmental changes and service statuses. Leveraging federated learning algorithms that amalgamate model parameters from various households enables personalized model updates and predictions of smart home service statuses. Experimental results demonstrate the method’s effectiveness in controlling smart home devices, accurately meeting user demands with high precision and rapid convergence speed.