
第 1 卷 第 4 期

2012 年 11 月

集 成 技 术

JOURNAL OF INTEGRATION TECHNOLOGY

Vol. 1 No. 4

Nov. 2012

作者简介：熊文，博士研究生，研究方向为大数据存储技术；喻之斌，副研究员，研究方向为计算机体系结构和性能评估，在体系结构和性能

评估领域的顶级会议上发表了论文多篇，是多个顶级期刊如TPDS的审稿人，也是多个知名国际会议如HPCA的审稿人；须成忠，研究员，现任中

国科学院深圳先进技术研究院研究员、首席科学家、云计算研究中心主任，美国韦恩州立大学电子与计算机工程系终身教授、云计算与互联网

实验室主任，须成忠教授是IEEE和IEEE计算机协会资深会员，美国华裔教授学社理事，他也是中国自然科学基金会2010“海外学者合作研究基

金”（“海外杰青”）获得者。2011年入选“广东省领军人才”计划和国家“千人计划”，主要研究方向为并行与分布式系统、互联网与云计

算、高性能计算、移动嵌入式系统。

几个常见分布式文件系统特征分析和性能对比
　　熊 文 喻之斌 须成忠
（ 中国科学院深圳先进技术研究院 深圳 518055)

摘 要 近年来随着云计算市场规模不断增长，作为云计算平台基础设施的云存储系统也随之显得越来越重要。数以万计

的互联网应用已经运行于云计算环境，同时大量不同的应用也即将从传统运行环境转移到云计算平台。不同的互联网应

用的存储需求可能不一样。例如：应用中涉及的单个文件大小，文件数量，IO访问模式，读写比率等，都对底层存储系

统提出了不同的要求。这说明在云计算环境中，单个文件系统可能无法满足全部应用的存储需求， 本文尝试通过在单一

云计算平台中部署多个不同分布式文件系统来优化存储系统的总体性能。

 为了优化混合式文件系统的性能，首先需要分析不同文件系统的性能特征。本文通过量化方法分析了云计算环境下

几个常用的分布式文件系统，这些文件系统分别是ceph，moosefs，glusterfs和hdfs。实验结果显示：即使针对同一文件

的相同读写操作，不同分布式文件系统之间的性能也差异显著，当单个文件的大小小于256MB时，moosefs的平均写性能

比其它几个文件系统高22.3%；当单个文件大小大于256KB时，glusterfs的平均读性能比其它几个文件系统高21.0%。这些

结果为设计和实现一个基于以上几个分布式文件系统的混合式文件系统提供了基础。

关键词 分布式文件系统；性能测量；基准测试程序

A Characterization and Analysis of Distributed File Systems

XIONG Wen YU Zhi-bin XU Cheng-zhong
(Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China)

Abstract Recently, there has been an explosive growth in cloud computing, greatly increasing the importance of storage
in such systems. A wide range of applications have been running in cloud and more and more variant applications are
rushing into this platform. Different applications may have different requirements for storages such as fi le size, the number
of fi les, and I/O performance. This indicates only a unifi ed fi le system in cloud would keep the overall system performance
suboptimal or even cannot satisfy the need of all applications in a cloud. However, it is unclear that whether it is benefi cial
to optimize the overall I/O performance by employing variant fi le systems in a single cloud computing platform.
In this paper, we address the above problem by characterizing several popular distributed files systems used in cloud
computing. These file systems are ceph, moosefs, glusterfs and hdfs. Through the characterization, we find that the
performance of the same operation such as read or write may be dramatically different for different fi le systems. When the
fi le size is less than 256 MB, moosefs has the best writing performance. On average, its writing performance outperforms
others by 22.3%. As for reading performance, glusterfs is the best when the fi le size is larger than 256KB. Its reading
performance is 21.0% higher than other file systems. These findings lead us to design a hybrid file system for cloud
computing platform, attempting signifi cantly improve the overall performance.

Keywords distributed fi le system; performance measurement; benchmarks

4 期 熊 文，等 :几个常见分布式文件系统特征分析和性能对比 59

1 Introduction

In recent years, there is an explosive growth in cloud
computing, greatly increasing the importance of storage
in such systems. According to a new Forrester report
called “Sizing the Cloud” [1], which is published by
an independent research institute -Forrester Research-
expects the global cloud computing market to reach $241
billion in 2020 compared to $40.7 in 2010. At the same
time, Cloud Storage has also been increased in popularity
recently. As one of the three types of basic resources in
Cloud Computing platform [8], storage does not only meet
the storage requirements of various applications in cloud
platform, but also provides the capability for other basic
infrastructures to store and to retrieve data. Furthermore,
there are many popular applications, such as dropbox,
icloud and ubuntu one, directly constructed on cloud
storage systems [2].
On the other hand, industry has already shift gears to
run applications on cloud. Taking the top two cloud
computing platforms as example, there are a few
hundreds of popular applications already deployed in the
Amazon EC2 [3]. Meanwhile, there are dozens of typical
applications running in the windows Azure platform [4].
In addition to the larger number of applications running
on cloud, the types of applications are also dramatically
different. For example, the various applications in
Amazon EC2 have been classified into nine categories,
including application hosting, backup and storage, content
and delivery, e-commence, high performance computing,
media hosting, on demand workforce, search engines and
web hosting[8].
Different applications may have different requirements
for storage. For example, CampusLIVE uses CloudBerry
Lab solutions on Amazon Simple Storage Service and
Amazon CloudFront to serve millions of static images[3].
Soundtrckr is the first geosocial Internet radio, with 8
million songs available to users to create radio stations
and easily share them on social media applications[3].
And Marcellus provides video platform, which delivers
high quality video access on its clients’ Websites. The fi le
size of those applications distributes between dozens of
KBs of image, a few MBs of song and a few GBs of high

defi nition video [3].
Only one fi le system will keep the overall performance of
cloud system suboptimal or even cannot satisfy the need
of all applications in a cloud. Naturally, making multiple
fi le systems co-exist in the same cloud may be feasible.
However, it is unclear that whether it is beneficial to
optimize the overall I/O performance by employing
variant fi le systems in a single cloud computing platform.
To address this problem, in this paper, we characterize
several popular distributed files systems used in cloud
computing. These file systems are ceph[8], moosefs[9],
glusterfs[10] and hdfs[11]. Through the characterization, we
fi nd that the performance of the same operation such as
read or write may be dramatically different for different
file systems. When the file size is less than 256 MB,
moosefs has the best writing performance. On average,
its writing performance outperforms others by 22.3%. As
for reading performance, glusterfs is the best when the
fi le size is larger than 256KB. Its reading performance is
21.0% higher than other fi le systems.
In particular, the main contributions of this paper are as
follows:

· We characterize distributed fi le systems from several

different aspects, including architecture of distributed
fi le system, algorithm of metadata indexing and data
locating and file system interface. We have run a
series of experiments to evaluate the performance of
the four different distributed fi le systems.

· We propose an approach to optimize overall I/O

performance for applications involved files with
different size. The key idea is to store the fi le with a
fi xed size to the best suitable distributed fi le system.

The rest of the paper is organized as follows. Section
2 describes the four distributed file systems. Section 3
depicts the experimental methodology. Section 4 shows
the results and analysis and section 5 concludes the
paper.

2 Distributed fi le systems

In this section, we describe four different distributed
file systems respectively. These distributed file systems
including: glusterfs, hdfs, ceph and moosefs.

集 成 技 术 2012 年 60

2.1 Ceph

Ceph is a distributed object store and file system
designed to provide excellent performance、reliability
and scalability. Ceph provides a traditional file system
interface with POSIX semantics and provides object
storage and block device interfaces [8]. Ceph has four
components which are monitor, object storage daemon,
client, and metadata servers.
Monitor provides authentication for members in the
storage cluster, and monitors the state of all members in
the storage cluster.
Object storage daemon is a smart storage node interacting
with other Object storage daemons, and provides the
capability of self-managing.
The client accesses object storage system or distributed
file system by librados or librbd and get data by
interacting with the Object storage daemons directly.
The metadata server cluster provides a service that maps
the directories and fi le names of the fi le system to objects
stored within RADOS clusters.
2.2 Hdfs

Hdfs is the default file system in hadoop ecosystem.
It provides native support for mapreduce computing
framework. It also provides proprietary APIs and POXIS
like interface by fuse-dfs component [11].
Hdfs adopt master-slave architecture. An hdfs cluster
consists of a single namenode and a master server that
manages the file system namespace and regulates access
to files by clients. In addition, there are a number of
datanodes, usually one per node in the cluster, which
manage storage attached to the nodes that they run on. hdfs
exposes a file system namespace and allows user data to
be stored in fi les. Internally, a fi le is split into one or more
blocks and these blocks are stored in a set of data-nodes.
2.3 Glusterfs

Glusterfs provides an interface with POXIS semantics and
NFS/CIFS interface. It is a scale-out NAS file system and
has three different components including client, storage
node and NFS/Samba storage gateway. Storage nodes are
typically deployed as storage bricks[10].Glusterfs provides
customers the capability to build RAID-like storage system.
Glusterfs is based on peer to peer architecture, without
metadata server, clients take more responsibilities

including volume management, I/O scheduling, file
locating and data caching.
2.4 Moosefs

Moosefs provides interface with POXIS semantics and it
is available on every Operating System with a working
FUSE implementation [9].
Moosefs consists of four components including
chunkserver, metalogger server, client and metadata
server.
Chunkservers storing files data and synchronizing it
among themselves.
Metadata server is a single machine managing the whole
fi le system and storing metadata for every fi le.
Metalogger servers are responsible for storing metadata
changelogs and downloading main metadata file
periodically; so as to promote these servers to the role of the
metadata server when the primary master stops working.
Client use as daemon process named mfsmount to
communicate with the metadata server and chunkservers.
2.5 Design Decisions of Distributed File Systems

The design decisions including: architecture of distributed
file system, the algorithm of metadata indexing and
data locating, the file system interfaces, data replicate
mechanism, data migration mechanism, disaster recovery
mechanism and the snapshot technology, the detail
information as table 1 described.
MDS is metadata server in moosefs and ceph, while MDS
is namenode in hdfs.
All of the four different distributed fi le system provides
the capability to storing data between different fault
domains.

3 Experimental Methodology

In this section, we evaluate the four different distributed
file systems using a file server workload (based on
fi lebench).
3.1 Experimental Platform

The configurations of all the machines are configured
with, Intel(R) Xeon(R) CPU E5620 @2.40GHz 2CPU 8
cores processor, 16GB of memory, three 2000G 7200 rpm
disks, and a 1000Mbs full-duplex Ethernet connection to
switch, and all the member of each cluster are connected

4 期 熊 文，等 :几个常见分布式文件系统特征分析和性能对比 61

to one switch.
The system software information about the measuring
environment is as follows: OS, SUSE Enterprise Edition
11 sp1 x86_64; OS kernel, 2.6.32.12-0.7; glusterfs,
version3.2.1; moosefs, version 1.6.25; ceph, v0.34; hdfs,
version 1.0.3; fi lebench version 1.4.9.1.
The ZCAV effect was taken into consideration, each
physical disk was divided into two partitions with fi xed
size, each partition was formatted to ext3 as the default
local fi le system, and just the second partition be used in
the measuring procedure[12].
We run a series of experiments to evaluate the
performance of different distributed file systems
respectively, information of the four storage cluster as
table 2 described.
In hdfs cluster, both the MDS and the second namenode
are in the same physical machine. Other node is the
metalogger server in moosefs cluster, is the monitor in
ceph cluster and is the second namenode in hdfs cluster.

3.2 Test Methodology

Filebench takes a fi le size distribution, a read/write ratio
and the number of subdirectories. For each workload,
filebench creates the specified number of subdirectories
and creates predefined file size distribution within
those subdirectories. After the configuration was build,
transactions including a series of read or write operations,
are performed against it. We record the number of files
written/read per second, the total size of the fi le set and
the time to write or read the entire fi le set.
In the reading throughput test, two threads read
simultaneously from the distributed file system, each

Table 1. Design decitions of four distributed fi le system

Table 2. Member of storage cluster

集 成 技 术 2012 年 62

thread reads a sequentially selected file from the
predefi ned fi le hierarchy, the size of the I/O operations be
specifi ed with 1MB.
In the writing throughput test, two threads write
simultaneously to the distributed fi le system, each thread
writes to a fi le according to the predefi ned fi le hierarchy,
the size of the I/O operations be specifi ed with 1MB.
In between each test, we unmounted the tested distributed
file system, and remounted it, this ensured that we started
each test on a cold cache for that distributed fi le system. For
each test, we took 10 measurements and averaged them.

4 Results and Analysis

4.1 Reading Performance

Figure 1. Reading performance of hdfs, ceph, glusterfs and moosefs
 with difference fi le sizes

When the file size less then 256KB, the distributed
file system with best reading performance is moosefs,
meanwhile, the file size is larger than 256KB, the one
with best reading performance is glusterfs.
The average speed calculated by the total size of the fi le
set and the total time the benchmark consuming.

Table 3. Average reading speed

4.2 Writing Performance

When the file size less then 256MB, the distributed
file system with best writing performance is moosefs,
meanwhile, the file size is larger than 256MB, the one
with best writing performance is hdfs.
The average speed calculated by the total size of the fi le

set and the total time the benchmark consuming.
Table 4. Average writing speed

4.3 Different Replicas Level in Hdfs

Figure 3. Impact of various replicas levels on writing performance of hdfs

On average, the configuration with one replica is
25% faster than the one with three replicas on writing
performance.

Figure 4. Impact of various replicas levels on reading performance of hdfs

Figure 2. Writing performance of hdfs, ceph, glusterfs, and moosefs
 with different fi le sizes

4 期 熊 文，等 :几个常见分布式文件系统特征分析和性能对比 63

There is no obvious performance variance between the
two different replicas level on reading performance.

5 Conclusions

Given a series of different file size classes, the
performance of operations such as read or write are
dramatically different on the four distributed fi le systems.
For a specifi c application involved a huge number of fi les
with different size, this approach, by storing the fi le with
size less than 256MB to moosefs and storing the fi le with
size larger than 256MB to HDFS, can greatly enhance the
overall write performance. by storing the file with size
less than 256KB to moosefs and storing the fi le with size
larger than 256KB to glusterfs, can greatly enhance the
overall read performance.

6 Future Work

Based on our characterization, we can imagine that a
hybrid file system can provide customers the capability
of employing the best suitable file system to store files
with different size and consequently greatly enhance the
overall performance of a distributed storage system in
cloud platform. We, therefore, will implement a cloud
fi le system with different fi le systems but with a unifi ed
interface.

参 考 文 献

[1] Forrester [EB/OL]. http://www.forrester.com/

[2] Drago I, Mellia M, Munafò M M, et al. Inside dropbox

understanding personal cloud storage services [C] // Internet

Measurement Conference, Boston, USA, 2012.

[3] http://aws.amazon.com/solutions/case-studies/.

[4] http://www.windowsazure.com/.

[5] Ghemawat S, Gobioff H, Leung S T. The Google fi le system [C]

// In Proceedings of the 19th ACM Symposium on Operating

Systems Principles, Bolton Landing, 2003.

[6] Lenk A, Klems M, Nimis J, et al. IEEE Cloud [C] // Proceedings

of the International Conference on Software Engineering

Challenges of Cloud Computing, 2009: 23-31.

[7] Liu X H, Han J Z, Zhong Y Q, et al. Implementing WebGIS on

Hadoop: A Case Study of Improving Small File I/O Performance

on HDFS [C] // Cluster Computing and Workshops, 2009.

[8] Weil S, Brandt S A, Miller E L, et al. Ceph: a scalable, high-

performance distributed fi le system [C] // Proceedings of the 7th

Conference on Operating Systems Design and Implementation,

2006.

[9] Moosefs homepage [EB/OL].http://www.moosefs.org/

[10] GlusterFS homepage [EB/OL]. http://www.gluster.org

[11] Hadoop homepage [EB/OL]. http://hadoop.apache.org/

[12] Traeger A, Zadok E, Joukov N, et al. A nine year study of fi le

system and storage benchmarking [J]. ACM Transactions. 2008,

4(2): 56.

