
第 2卷 第 2期

2013 年 3 月

集 成 技 术

JOURNAL OF INTEGRATION TECHNOLOGY

Vol. 2 No. 2

Mar. 2013

作者简介：黄鑫，硕士研究生，研究方向为计算机应用技术；罗军，副研究员，研究方向为算法分析与设计、数据挖掘、GIS，E-mail:jun.luo@
siat.ac.cn。

基于最小生成树的大规模数据分类模型及其
MapReduce实现
黄 鑫1，2 罗 军1

1（ 中国科学院深圳先进技术研究院 深圳 518055)
2（ 中国科学院大学 北京 100049)

摘 要 数据的快速增长，为我们提供了更多的信息，然而，也对传统信息获取技术提出了挑战。这篇论文提出了

MCMM算法，它是基于MapReduce的大规模数据分类模型的最小生成树（MST）的算法。它可以看做是介于传统的

KNN方法和基于聚类分类方法之间的模型，旨在克服这两种方法的不足并能处理大规模的数据。在这一模型中，训练集

作为有权重的无向完全图来处理。顶点是对象，两点之间边的权重是对象间的距离。这一距离，不同于欧几里得距离，

它是一个特定的距离度量。这样，可以找到图中最小生成树集，其中，图中每棵树代表一个类。为了降低时间复杂度，

提取了每棵树中最具代表性的点来代表该树。这些压缩了的点集，可以通过计算无标签对象和它们之间的距离，来进行

分类。MCMM模型基于MapReduce实现并且部署在Hadoop平台。该模型可扩展处理大规模的数据，是因为Hadoop支持

数据密集分布应用，并且这些应用可以和数以千计的节点和数据一起运作。另外，MapReduce 和Hadoop能在由商品机组

成的集群上很好的运行。MCMM模型使用云平台并且通过使用MapReduce 和Hadoop进行云计算是有益处的。实验采用

的数据集包括从UCI数据库得到的真实数据和一些模拟数据，实验使用了4000个集群。实验表明，MCMM模型在精确度

和扩展性上优于KNN和其他一些经常使用的基础分类方法。

关键词 最小生成树；分类；MapReduce；云计算；图挖掘

A Classifi cation Model for Massive Data Based on Minimum Spanning Tree

with MapReduce Implementation

HUANG Xin1,2 LUO Jun1

1(Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The Rapid growth of data has provided us with more information, yet challenges the traditional techniques
to extract the useful knowledge. In this paper, MCMM, a Minimum spanning tree (MST) based Classification model
for Massive data with MapReduce implementation is proposed. It can be viewed as an intermediate model between the
traditional K nearest neighbor method and cluster based classifi cation method, aiming to overcome their disadvantages and
cope with large amount of data. In this model, we treat the training set as weighted undirected complete graph. The vertices
are objects and the weight of an edge between two objects is their distance, which could be a certain distance metric other
than Euclidean distance. Then we fi nd a minimum spanning tree forest of the graph, in which each tree represents a class.
In order to reduce the computing time, we extract the most representative points of each tree to represent that tree. The
shrunk point sets can be used for classifi cation by computing the distances from unlabeled objects to them.MCMM model
is implemented on Hadoop platform, using its MapReduce programming framework. Since Hadoop supports data intensive
distributed applications and enables applications to work with thousands of nodes and petabytes of data, MCMM model
is scalable to deal with massive data. In addition, MapReduce and Hadoop work well on cluster composed of commodity
machines. Therefore there is no special need for particular hardware or architecture. This is actually the feature of cloud

集 成 技 术 2013 年 70

1 Introduction

Classification is one of the most active research fields
in data mining and machine learning, which is widely
used in many application areas, including e-commerce,
WWW, bioinformatics, scientific simulation, customer
relationship management, business intelligence etc. With
the development of hardware and software, it is becoming
normal that the size of databases goes to Gigabytes or
even larger. This raises new challenge to data mining
techniques, including classifi cation and so on.
There are many techniques for classification. If full
knowledge of underlying distribution is available,
Bayes analysis yields an optimal decision procedure
and minimum probability of error[4]. Sadly this kind of
knowledge is always hard or impossible to get, in which
cases many algorithms make use of distance or similarity
among samples to classify them. The K nearest neighbor
technique[4] falls into this category and is widely used in
a lot of areas for its simplicity to handle and generally
has high accuracy. However, KNN classifier faces the
problem that it may decrease the precision because of
the uneven density of training data. Also KNN has to
compute the distances between an unlabeled object and
every object in training set. When the size of data set
goes to several gigabytes, which is common in today’s
information explosive world, the time for classifying
becomes unacceptable. The cluster based classification
extends the basic idea of KNN[30]. It first performs
clustering on the training set, and each cluster belongs to a
particular class, and then uses certain kind of center point
to represent each cluster. Classification stage is similar
to KNN. The only difference is that the training set is
composed of those clusters’ centers. Although this method
reduces the total points of training set, it may lose too

much information and is only suitable for convex group,
which can be sufficiently substituted by a center point.
What’s more, traditional clustering methods on huge
amount of data consume too much time or even can’t be
applied to massive data due to memory limitation.
In this paper, we present a classification model which
tries to fi nd an intermediate model between the above two
extremes, aiming at benefi ting from their advantages, and
removing some of the drawbacks. One direct and simple
way is to use a certain kind of subtree to represent each
cluster which is obtained by clustering on training set, and
then classify using idea similar to KNN. To achieve this
goal, we firstly use minimum spanning tree (MST) for
clustering, which is a simple and effective way compared
with other traditional clustering method. Each cluster we
get is actually a subtree, whose majority nodes are of the
same class. Next step, we extract the most representative
points of each subtree, and then get shrunk subtrees
(actually they are subsets of nodes. We use subtree for
convenience in the remaining text). By calculating the
distances between an unlabeled object and each shrunk
subtree, we can select the nearest subtree and classify the
object into this subtree. The reason why shrunk subtrees
are used is to reduce the quantity of training set which
overwhelms KNN, yet without losing too much useful
information. Using subtree is a vital feature when the
cluster is not convex or of irregular shape.
Another notable feature of our classification model
is that it can cope with a huge amount of data from
modeling to classifi cation in an effective way, especially
in the period of clustering, because we use MapReduce
distributed programming framework, which has the
ability to processe huge amounts of data in parallel, using
hundreds of machines. We have done experiments on
Downing 4000 cluster installed with Hadoop, an open
source implementation of MapReduce. It shows that

computing. MCMM model is used on cloud platform and could benefit from cloud computing by using Hadoop and
MapReduce. Experiments had been carried out on several data sets including real world data from UCI repository and
synthetic data, using Downing 4000 cluster, installed with Hadoop. The results show that MCMM model outperforms KNN
and some other classifi cation methods on a general basis with respect to accuracy and scalability.

Keywords minimum spanning tree; classifi cation; MapReduce; cloud computing; graph-based mining

2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 71

our model outperforms KNN and some other traditional
classification methods both in accuracy and efficiency.
And the nature of MapReduce’s distributed computing
ability endows our model with good scalability.
The rest part of this paper is organized as follows.
Section 2 presents the background knowledge and related
work. Section 3 describes our classification model in
details. How to implement the model with MapReduce is
presented in Section 4. Experiments and results are shown
in Section 5, and we conclude the paper in Section 6. Pay
attention that we may use minimum spanning tree and
MST interchangeably in this paper, and they mean the
same thing.

2 Background and Related Work

In this section, we give some background knowledge and
a brief description of existing classification algorithms
related to our model.
2.1 Hadoop and MapReduce

Hadoop is the Apache Software Foundation top-level
project. It provides and supports the development
of open source software that supplies a framework
for the development of highly scalable distributed
computing applications. The two fundamental parts of
Hadoop Core are MapReduce framework, the cloud
computing environment, and Hadoop Distributed File
System (HDFS). It also provides other projects, such as
HBase, Hadoop’s distributed, column-oriented database
efficiently storing and handling semi-structured data as
Google’s Big Table storage system, and PIG, a high level
language for data analysis[32]. Hadoop is drawing more
and more attention due to its simplicity and power for the
development of distributed applications on cloud.
Hadoop MapReduce is a software framework for easily
writing applications which process vast amounts of data
(multi-terabyte data sets) in parallel on large clusters of
commodity hardware (e.g. cloud platform) in a reliable,
fault-tolerant manner[23]. It is based on two distinct steps.
First step is map: the framework sequentially passes
over the input fi le and output (key, value) pairs, in which
individual input records can be processed in parallel.
Second step is reduce: it fi rstly groups all values by key,

then processes the values with the same key and outputs
the final result. The framework shields the programmer
from the details about the data distribution, replication,
fault-tolerance, load balancing, etc. So the programmer
only needs to provide two functions, a map and a reduce.
Yet it’s powerful enough to process more complicated
problems than just word counting. It can perform sorting,
joining and many other operations on massive data in an
efficient way[26]. Kang et al. present PEGASUS in [13],
which is a tool for large scale graph mining applications.
The key functions of PEGASUS are all implemented
by MapReduce, including finding connect components,
calculating pageranks, estimating diameter. Karloff et
al. [15] prove that it is possible to find the minimum
spanning tree of a huge graph by using MapReduce when
traditional algorithms for computing MST consume
intolerable time or exceeds the limitation of single
machine’s memory.
2.2 Clustering Based Classifi cation

Clustering methods have been applied to supervised
classifi cation problems[30, 17, 10]. In [20], Mui et al. illustrate
building a cluster tree classification model using the
k-means clustering method. The problem with their
model is that only small numeric data could be classifi ed
and every time only two sub-clusters are formed. In [10],
Huang et al. proposed a new interactive approach to
build a decision cluster classifi cation model, in which the
k-prototypes clustering algorithm is used to partition the
training data. But the above two methods are not adequate
for high dimensional data with noise. In [18], a variable
weighting k-means algorithm to build cluster-based
classification models automatically is proposed, which
can reduce the impact of noisy attributes by assigning
smaller weights to them in clustering. However, all of
the above methods adopt the basic idea of traditional
k-means clustering to cluster. When data set goes beyond
Giga-, Tera- or Peta- bytes, those methods become too
much time-consuming or even can not be used because of
single memory’s limitation. While in our proposed model,
minimum spanning tree clustering can eliminate noise
by cutting long edges with the number of nodes under
a threshold. In addition, our MST clustering algorithm
benefi ts from distributed system and parallel computing

集 成 技 术 2013 年 72

by using MapReduce framework and Hadoop’s distributed
fi le system (HDFS).
2.3 Minimum Spanning Tree for Clustering and

 Classifi cation

Given an edge weighted graph, minimum spanning tree
(MST) is a tree spanning all the vertices, whose total
weight is minimal. It has been extensively researched and
is widely used in many areas. Here we briefly state its
usage in two branches of data mining.
MST for clustering Minimum spanning tree has been
used for clustering in some applications[29, 24, 22, 9]. It is a
variation in the family of clustering algorithms based on
graph theory. The purpose of clustering algorithm based on
graph theory is to take advantage of the simplicity of tree
structure, which can facilitate efficient implementations
of much more sophisticated clustering algorithms. It is
widely used in the field of computer vision where the
data are all in very high dimension space. In general, the
idea of graph algorithm is as follows: fi rstly, it constructs
a weighted graph upon the points in the X-dimensional
space, with each point being a node, and the similarity/
distance value between two points being the weight of the
edge connecting the two points. Then, it decomposes the
graph into connected components (e.g. subtrees) in some
way, and calls those components as clusters. As MST
based clustering algorithm, it does not depend on detailed
geometric shape of a cluster, it overcomes many of the
problems faced by classical clustering algorithms. Figure
1 shows that the tree can represent a non-convex cluster
more accurately than a center.

Figure 1. White dots are objects. (a) Using the center (red dot) of these
objects to represent it. (b) Using MST to represent this cluster

MST for classifi cation Minimum spanning tree can also

be used for classifi cation. Piotr Juszczak et al. propose a
minimum spanning tree based one-class classifi er in [11].
This classifier builds on the structure of the minimum
spanning tree constructed on the target training set only.
The classifi cation of a test object relies on its distance to
the closest edge of that tree, hence the proposed method
is an example of a distance-based one-class classifi er.
Our proposed model combines clustering based
classifi cation with MST clustering and MST classifi cation.
It aims to take advantage of them all. More importantly,
we use MapReduce distributed programming framework,
which enables our model to handle massive data
effi ciently in a distributed way.

3 MST Classification Model for Massive
 Data with MapReduce Framework

In this section, we present how to use MST clustering
algorithm to fi nd clusters of the training set, shrink these
clusters to reduce the computational complexity and apply
these MST clusters to classifi cation.
3.1 Defi nitions

For a training set, objects from the same class tend to
be spatially close in the data space. By clustering on the
training data, objects in the same cluster have similar
behaviors or properties and tend to be in the same class [10].
The distances between every two objects are calculated by
a distance metric function, which is also used in the fi nal
classification phase. There are many distance metrics,
such as Euclidean distance, Cosine distance, Hamming
distance, Manhattan distance, Tanimoto distance, etc.
Usually the choice of distance metric has a great impact
on the classifi cation accuracy.
Let X be a training set of n labeled objects. Each object
in X has m attributes and a label suggesting its class.
Without loss of generality, missing values of attributes are
permitted.
Defi nition 1. A MST-clustering forest of X is a partition
of X into k sets T1,...,Tk, where Ti is a minimum spanning
tree connecting all the nodes within it, which satisfi es:

Definition 2. The dominant class of a MST is the class
that the majority of nodes are labeled to. And the tree is

2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 73

labeled by dominant class.
Defi nition 3. The fi rst principal path of a MST is the path
between two vertices that yields maximum length. The
second principal path is obtained by excluding edges from
the fi rst principal path and fi nding the longest path in the
remain, and so on [11].
By using N principal paths, the tree representation of the
data can therefore be simplified by considering only a
few principle paths. Figure 2 shows the fi rst and second
principal paths in a MST.

Figure 2. The fi rst principal path of the MST is marked by red solid
line, and the second principal path is marked by orange dashed line

Definition 4. The key points of a MST are the
representative points in dense parts and backbone points.
Here dense part means that all nodes in this part can reach
each other within a predefined short distance and there
are a variety of ways of choosing representative points,
such as the one with most neighbors. Backbone points are
those whose neighbors are all far from them.

By using key points, the tree representation of the data
can therefore be simplified by considering only key
points. Figure 3 shows the key points in a MST.
In general, a MST-clustering forest of train set can be
used for classification. It is actually a cluster based
classifi cation model, only the representation of a cluster
is a tree. However for a training set of large quantity of
objects, it is time-consuming to include all the nodes for
classifi cation. So using some kind of way to shrink every
MST is important. N principal paths or key points are the
choices which we select in our proposed model.
3.2 Generating MST-clustering forest

This is the most challenging part in our modeling process,
since the traditional algorithms for finding MST in a
graph are not applicable when the numbers of edges
are huge. We implement a distributed algorithm to find
MST and then construct MST-clustering forest with
MapReduce. The implementation details will be stated in
section 4. This section can be further decomposed into the
following parts:
Calculating similarity matrix For a training set X of n
objects, its similarity matrix is:

where dij is the distance between objects i and j. The
function calculating dij is determined by the chosen
distance metric.
Finding MST in the graph The cost of constructing
a minimum spanning tree with classical sequential
algorithms is O(mlog(n)) [21], where m is the number of
edges in the graph, n is the number of vertices. More
effi cient algorithms for constructing MST have also been
extensively researched in [16, 14, 7]. These algorithms
promise close to linear time complexity under different
assumptions. However there is no guarantee that they
can be efficient under any condition. With the increase
of vertex number, sequential algorithm also faces the
problem of memory limitation. To fi x this, many parallel
or distributed algorithms are put forward [6, 2, 5]. But most
of them are too complicated to implement due to too

Figure 3. (a)A,C,D,E,F are in the dense part of the tree because they
can reach all their neighbors in a short distance; B or H is also a key
point, because the dense part can be confi ned within {BH}. (b)G is a
backbone point, since its neighbors are all far from it

集 成 技 术 2013 年 74

many message-passings and perform well only on special
graph with regular structure[5]. Moreover, traditional
parallel algorithms have specific requirements on the
machine they run on, such as SMP or supercomputer,
which is not always available. For a distributed algorithm
running on traditional distributed system, the overhead
of sending messages between processors, including
time cost and bandwidth limitation, facilities and time
for synchronization, may reduce the performance of
algorithm severely. Furthermore, programmer should
possess special knowledge when implementing parallel
algorithm in the above environment. The most prevalent
model for writing parallel algorithms is PRAM, in which
an arbitrary number of processors, sharing an unboundedly
large memory, operate synchronously on a shared input to
produce some output. However, building a large computer
with a large robust shared memory is rather difficult and
actually fully shared memory machines with large numbers
of processors do not exist today.
For all these reasons, there is still large room with respect
to optimizing the algorithm of finding MST, especially
distributed algorithms, as the data needed to be processed
has been growing rapidly. It has been demonstrated that
a large class of PRAM algorithms can be efficiently
simulated via MapReduce. In our classification model,
we adopt a novel distributed algorithm to generate MST
using MapReduce framework which is presented in

[15]. It can compute MST of a dense graph in only two
rounds, as opposed to log n rounds needed in the standard
PRAM model[15]. The strength of MapReduce lies in the
fact that it uses both sequential and parallel computation.
In addition, it runs on Hadoop cluster, which can be
set up by commodity machines with the installation of
Hadoop related software (actually it is a platform for
cloud computing). Therefore there is no need for SMP, or
supercomputer etc.
Denote the graph, vertex set, and edge set by G, V, and
E. The procedure of generating MST can be described as
follows [15]:
Step 1: partition the vertex set V into k equally sized
subsets : , wi th for

 and . For every pair (i,j), let

be the edge set induced by vertex set , that is
, and denote the resulting

sub graph by ;

Step 2: for each of the sub graphs Gi,j, compute the

unique minimum spanning tree Mi,j. Then let H be the
graph consisting all of the edges present in Mi,j, so

;
Step 3: compute M, the minimum spanning tree of H.
The correctness of the above algorithm is proved in [15].
Cutting long edges to get MST forest of the graph
In the case of clustering with MST, in order to produce

(a) There are objects of two classes and they have a clear boundary. If we cut the longest edge (on which we put a cross), we can get two clusters. Each
of them is composed of objects from the same class. This is the fi nal result
(b) The objects from two classes have some overlap. So even there are only two classes, we can not build a model of only two MST clusters. More
edges should be cut to form purer clusters, on which we put a cross. And the truly mixed area E can be removed. We get A;B;C;D four MST clusters
fi nally

 Figure 4. Two classes of objects with and without clear boundary

2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 75

clusters after MST of the whole graph is generated, we
can sort the edges of MST in descending order, and
remove the first k−1 longest edges [29, 1]. The value of k
should be preset and usually it is pretty diffi cult, because
the number of classes is unknown.
However, in the case of classifi cation, k can be set to (C
−1) initially, where C is the number of classes. At best,
when each class is separated from each other by a clear
boundary, the cutting phase can stop (see Figure 4(a)).
However, in some cases, classes are mixed inherently,
such as the case in Figure 4(b). In order to adapt our
model to it, the cutting phase of our model is as follows:
Step 1: cut (k−1) longest edges to produce k subtrees,
where k is the number of classes.
Step 2: for each subtree Ti, calculate its purity Pi and total
count TCi .

If Pi< Purity, store Ti and remove it from clusters
Else if TCi≤ IsolateNum, (it may be in an mixed
area, which is no good for classifi cation),
delete this MST ;
Else cut the longest edge, and go to the
beginning of Step 2.

IsolateNum is a preset integer which denotes the vertex
number of the smallest subtree. Usually it’s a very small
value, i.e. one or two, for the purpose to eliminate truly
mixed MST. Pi is calculated by Nmci / TCi, where Nmci is
the number of objects with majority class in Ti, and Purity
is a preset value to control the accuracy of the model. The
larger Purity is set, the less non-majority class objects in
a subtree will be. After the above operations, we get the
MST forest of the original graph. Note that the total count
of all MST forests’ vertices may be less than that of the
graph because of the elimination of mixed clusters in Step 2.
3.3 Shrink MST in the MST-clustering forest

MST clustering forest can describe clustering structure
of a graph, especially for a non-convex cluster. But
sometimes it’s unnecessary to include all the vertices
of the MSTs into the classification model. Some
representative vertices could be enough. Otherwise, a
model with complete vertices may reduce efficiency or
have the problem of over fi tting to the training set. Thus
we can adopt either one of the following two methods
to shrink MST, with the goal of eliminating some

unnecessary vertices.
Using N principal path The defi nition of N principal path
has been given by defi nition 3. The tree representation of
data can be simplifi ed by using a few principal paths. The
algorithms 1 and 2 can be used to fi nd the fi rst principal
path [3].
Let G=(V;E;w) be a graph. For a vertex v, the eccentricity
of v is the maximum of the distance to any vertex in the
graph, which can be computed by algorithm 1.

Lemma 1. Let r be any vertex in a tree T. If v is the
farthest vertex to r, the eccentricity of v is the length of
the longest path (fi rst principal path) of T.

Lemma 1 has been demonstrated in [1]. Algorithm 2 uses
this property to fi nd the fi rst principal path of a tree.
The second principal path can be calculated by using
Algorithm 2 after deleting the edges in fi rst principal path,
and so on.
Using Key Points Apart from N principal paths policy,
we also applied key points method (see definition 4)
to our classification model. The following procedure
describes how to fi nd key points in a tree.
Denote the tree of which we want to fi nd key points by T,

集 成 技 术 2013 年 76

which has k vertices.
Step 1: label the T’s vertices with integers 1, 2 …k.
Step 2: collect the edge of the tree whose weight
is smaller than a predefined value. These edges are
organized by neighborhood relationship, and then we get
several neighborhood lists. All vertices within a list are
neighbors and close enough to each other.
Step 3: for each neighborhood list, we preserve the vertex
with the smallest label.
Step 4: for edges whose weight is larger than the
predefi ned value, we preserve both ends.
Figure 5 illustrates this process. Figure 5(a): fi rst label the
vertex of a tree by integers, suppose there are 21 vertices,
which are labeled by integer from 0 to 20. Figure 5(b):
collect edges whose weights are smaller than a threshold,
which are (0,1), (0,5), (2,7), (4,11), (4,19), (4,20),
(10,14), (10,15), (10,16), (6,8), (8,12), (9,13), (13,17),
(13,18), where an edge is presented by its two end nodes
in a bracket. We put the node with smaller label in the
front, just for consistency. These edges are organized by
neighborhood relationship: (0,1,5), (2,7), (4,11,19,20),
(10,14,15,16), (6,8,12), (9,13,17,18). Figure 5(c): within
each neighborhood relationship, use the node with the
smallest label is used to represent all its neighbors. Hence
we get 0,2,4,6,9,10. Node 3 is also collected. Although
it’s not collected in (b), it’s probably a representative node
of the tree since all of their neighbors are far.
If an algorithm needs a preset value, usually this is a
tricky part, such as the value of k in k-means clustering.
Recall in step 2, a preset value is required. There is no
strict standard on this setting, but we suggest it to be set
to 1/2 to 1/3 of the largest edge weight initially and later
to be adjusted to control the quantity of key points.
Note that the algorithm for finding key points proposed
above may not be an optimal one. However it’s
straightforward and can reflect the backbone of a tree

to some extent. In addition, it can be implemented with
MapReduce framework by simply adjusting the format of
input fi le which represents the tree. For each subtree in the
MST-clustering forest, either principal path or key points
policy can be adopted to shrink it. In our classification
model, we use both respectively and compare them. The
result can be viewed in section 5.
3.4 Classifi cation

The basic idea of classification is inherited from KNN.
First, we compute the distance between unlabeled object
and each subtree in MST forest. These subtrees are
different from the ones which are directly generated by
MST clustering, because they have been processed by
the shrinking policy described previously. Then we fi nd
the shortest distance and corresponding subtree Ti. The
unlabeled object is classifi ed to the class of Ti. Although
the classification idea is straightforward, there are
two parts needing further explanation: distance metric
selection and distance defi nition.
In our model, we decide to use Euclidean distance for
numerical attribute and Hamming distance for categorical
distance, after comparisons with several other distance
metrics, including Cosine distance, Manhattan distance
and Tanimoto distance. The distance from a point to a
tree can be defi ned as the smallest distance between the
point and all edges of the tree [11]. However, this distance
involves both the computing of projection and point-to-
point distance. Thus it is too complicated for practical use,
especially when the dimension is very large. We consider
the distance between x and tree Ti as the min (distance(x;
xi)), where xi is a node of tree Ti. And in order to speed up
the classifi cation, we implemented it with MapReduce.

4 MapReduce Implementation

In this section, the details of how to use MapReduce

Figure 5. Process of fi nding key points

2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 77

framework to implement our model and classify objects are
presented. Since we have described the related algorithms in
previous sections, here we only focus on implementation.
4.1 Finding MST with MapReduce

This phase can be further divided into the following steps.
Step 1: Generating similarity matrix of the training set.
Step 2: Finding MST in the undirected complete graph
corresponding to the similarity matrix.
The power of MapReduce framework lies in its ability of
distributed computing. In order to benefi t from this, as we
have illustrated in section 3, we should properly partition
the input fi le, allowing each map to operate on a partition
of more or less the same size. Considering a graph can be
expressed by a matrix, we can partition the matrix by row
and column to several blocks and control the size of each
block by defi ning the total number of the blocks. Assume
there are n objects in the training fi le and we labele them
by node IDs from 0 to (n−1). The matrix below shows
how each object is re-labeled with partition ID if the
training set is partitioned into k parts.

The fi rst row and column of the matrix is the node IDs. They
are divided into k groups, and these groups are separated by
solid lines. Assume the intersection of a row and a column
is an edge induced by the row node and column node.
Then the solid lines between groups can partition the edges
into k2 blocks, with the partition ID displayed in the above
matrix. The graph we use is an undirected complete graph,
so actually it is enough to consider the upper triangular part.
Denote partition ID by PID, which is in the form of [Row
Element][Column Element] as shown in the above figure,
then edge eij will go to partition pid, if pid. [RowElement]
≡ ik/n and pid. [ColumnElement] ≡ jk/n . This can be
accomplished by one map method.

(Inputkey, Inputvalue) : (ID, information)

Figure 6. Generating similarity matrix

Figure 7. Finding MST

When generating similarity matrix, the corresponding
reduce method will calculate distances between nodes
with the same PID. One PID is processed by one reduce.
(OutputKey, OutputV alue) : (PID, (StartNodeID
EndNodeID Distance))
where (StartNodeID EndNodeID Distance) is actually
the edge in the undirected complete graph, which will be
used for fi nding MST in the following step (see Figure 6).
The next step is generating MST. It consists of two
rounds. During the first round, map method will pass
the key and value from previous job to the reduce
after certain processing, and the corresponding reduce
method will use Kruskal’s algorithm to fi nd MST within
edges with the same PID. One PID is processed by one
reduce. (OutputKey, OutputV alue) : (PID, (StartNodeID
EndNodeID Distance)) where (StartNodeID EndNodeID
Distance)) is actually the MST edge. In the second

集 成 技 术 2013 年 78

round, map collects all the partial MSTs’ edges by
setting the PID to the same value, and the reduce does
the same thing as the fi rst round (see Figure 7).
4.2 Finding key points in the MST with MapReduce

Figure 8. Finding key points

Map
The input (key, value) pair is: (“MST”, (StartNodeID
EndNodeID Distance)), which is the output of the
previous MST generation job. The output (key, value)
pair is:
For the edge whose weight is smaller than a threshold:

Reduce
Only collect the key in the (key, List < value >) whose
key is smaller than all values in List < value >. The
complete job procedure can be seen in Figure 8.
4.3 Classifi cation with MapReduce

Map
The input fi le is training set after modeling, i.e. the shrunk
MSTs, with the form of (nodeID nodeInformation&Class)

per line. By using Hadoop API’s Text Input Format,
input file is passed to map line by line. The distance
between this node and unlabeled node is calculated by
map. The output (key, value) pair is: (unlabeledNodeID
distance&Class)
Reduce
According to MapReduce framework, the output of
map with the same key is organized as a list, which is
passed to a reduce method. The task of reduce method
in classification is to select the smallest distance within
a list and hence get the class for the unlabeled node. The
complete job procedure can be seen in Figure 9.

5 Experiments and Results

In order to verify the accuracy and effectiveness of our
proposed model, we have done experiments using data
sets from UCI Machine Learning Repository [34]. A brief
description of the data sets chosen is listed in Table 1.
We try to select data sets of different type, such as with
numerical attributes only, with categorical attributes
only, with combined attributes, to get a comprehensive
conclusion.

Figure 9. Classifi cation

Table 1 Data set information

Our experiments are completed on Dawning 4000 cluster,
which is set up by 10 separate nodes. Each node has
eight 2 GHz Dual Core AMD Opteron Processors and 8 G

memory, running Linux. And we use the latest version of
Hadoop package, hadoop-0.20.2.

2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 79

5.1 Choosing Distance Metric

Since our classification model can be regarded as an
intermediate model between KNN and clustering based
classifi cation method, whose accuracies both greatly rely
on the choice of distance metric, it’s necessary to select a
proper metric. Although most distance based algorithms
use Euclidean distance, there is no guarantee that it
performs well in every model. There has been a lot of
study on distance metric learning [28, 25]. But for simplicity

and practicability, we only choose several commonly used
basic metrics for numerical attributes. We use Hamming
distance for categorical attribute. The MST shrinking
policy we choose is principal path. The result is given
in Table 2. From above we can draw the conclusion that
Euclidean distance outperforms others on a general basis,
which can be chosen as the distance metric for our model.
The entry which is labeled as bad means that it’s very low
and there is no need to list it.

Table 2 Accuracy for diff erent distance metric

Table 3 Reduction rates

Table 4 Accuracy of MCMM and SMCMM

5.2 Comparison of Reduction Rates

By using the MST-shrinking methods we proposed in the
previous section, we can signifi cantly reduce the number
of samples used for classification compared with the
case in KNN, which should include all of the samples
in training set. Table 3 shows the reduction rate of our

model compared with KNN. The fi rst column of the table
indicates the shrinking policy. Each row lists the number
of remaining training samples and the reduction rates (in
brackets) in our models after shrinking policy. The row
begins with “KNN” actually lists the number of points in
the training set.

5.3 Accuracy of MCMM

In Table 4, the accuracies of MCMM on six different data
sets are shown. The description of the six data sets and
how they are partitioned to training and test set are given
in Table 1. Note that MCMM adopts the idea of clustering
based classifi cation method, which uses MST to clustering
the whole training set fi rst and then cut long edges to form
MST clustering forest. However, as mentioned above,
at the best case all objects from the same class are in the
same MST because they are closer to each other than to
the ones of a different class. Since we know the class of

every object in the training set, an alternative to building
the model is constructing only one MST for all objects of
the same class, and then perform the similar operation as
MCMM. We call this mode SMCMM, meaning Separate
MCMM. In Table 4, the row begins with “Separate MST”
is the accuracy of SMCMM, and the row begins with
“Global MST” is the accuracy of MCMM.
In Table 4, we can see that for shrinking MST, the policy
of key points is better than principal path policy, but not
significantly. When it comes to the way of constructing
MST clustering forest, the accuracies of the two have no

集 成 技 术 2013 年 80

signifi cant difference. This may be because that the data
sets we choose are inherently convex, and the advantage
of global MST clustering isn’t shown clearly. For
comparison, we apply some other common classifi cation
algorithms in Weka [33] to the six data sets, and result is
shown in Table 5.

Figure 10. Horizontal axis lists the data set name (BA=Breast Cancer,
CE=Car Evaluation, CA=Credit Approval), and vertical axis represents
the accuracy

From the comparison of Table 4 and 5, we can draw
the conclusion that our model is better and has no
significant difference from the best algorithm which we
adopt from weka regarding to accuracy. Note that, the
BFTree algorithm and KNN outperform other traditional
classification algorithms in weka in general, and our
model has similar accuracy to it, if not better. From
Figure 10 we can get a more direct view of comparison.
However, BFTree is decision tree-based classification
algorithm. When the size of training set is very large, the
memory can not store the whole tree structure and hence
can not be used for classifi cation, just as the case of “Letter

Recognition” data set. And from Figure11 we can see that
our model has greatly reduced the number of objects used
for classifi cation compared to KNN. For example, in the
case of “car evaluation”, 90% of the training objects have
been removed in our model, yet it yields higher accuracy
than KNN, which needs all of the training objects for
classifi cation.
5.4 Testing on Large Data

So far, we have described the prototype of MCMM and
presented some of its features by analyzing experiment
results. However, we haven’t referred to one of its most
notable features—the ability to deal with massive data in
a distributed way by using MapReduce framework. In this
part, we will discuss it in detail.
To better test the scalability and effi ciency of our model
on large data, we developed a data generator, as it can
produce data of various sizes. And the format of data is
similar to weka’s .arff fi le, which is one record per line,
and each line contains the record’s all attributes and label,
separated by commas. Here we generated data set record
of six real types and one class attribute and there are four
kinds of classes in all. For example:
1.647, 1.06, 1.78, 1.92, 1.57, 0.39, A
0.012, 0.278, 1.25, 0.453, 0.105, 0.843, B
First we show how the modeling time for MCMM
changes as we add more machines.
We construct MCMM using a training set of 20000
objects (equivalent to a complete graph with 200002 =
4×108 edges) on 3, 7, 11 machines. Figure12 (a) shows
that the time of constructing MCMM decreases as we
add more machines. This benefits from the distributed
computing of MapReduce framework and indicates our
model’s scalability.
After the model is constructed, it then comes to its real
function — classification. Figure 12(b) shows how the
classifi cation time changes with the input size of test set
using the MCMM model constructed above. In Figure12

Table 5 Accuracy of algorithms from Weka

Figure 11. zzHorizontal axis lists the data set name (BA=Breast
Cancer, CE=Car Evaluation, CA=Credit Approval), and vertical axis
is the percentage of the object number in classification model against
whole training set. KNN use all objects in the training set, hence the
height of its rectangle is always 1

2 期 黄 鑫，等：基于最小生成树的大规模数据分类模型及其MapReduce实现 81

(b) we also give the classification time of KNN using
the same training set. Note that we also implement KNN
with MapReduce and run it on our Hadoop cluster. It
is actually similar to MCMM classification. The only
difference is that KNN uses all the objects of training
set. However, our MCMM classification uses a subset
of training set. We can’t use traditional KNN algorithm,
since the data used and produced by KNN is too large to
fi t in a single machine’s memory (e.g. we try to classify

the same test sets using Weka’s KNN algorithm, but
always get “memory overflow” error). Figure 12 (b)
shows the classification time of MCMM is much better
than that of KNN, yet achieving nearly the same accuracy
(Figure12(c)).

6 Conclusion

In this paper, we present MCMM, a minimum spanning
tree-based classification model with MapReduce, which
is an intermediate model between k nearest neighbor and
cluster-based classification. MST of the training set is
computed and by cutting long edges several subtrees are
obtained, which are used to represent each cluster. We
propose two policies, key points and N principal paths,
to cut superfl uous edges of the subtrees. Benefi ting from
this, a more concise model is built and hence classifi cation
speeds up.
Another contribution is that we implement the model in
a distributed way by using MapReduce framework. Thus
our model is capable of dealing with huge amount of data
in an efficient way. In addition, the classification phase
also uses MapReduce. We run our model on a cluster of
ten nodes, installed with the Hadoop package, to test on
several data sets from UCI machine learning repository [34].
For comparison, we have also used weka [33] to classify the
same data sets. The experiment results show that MCMM
has advantage in classifying large data of multiple classes
and high dimension, both in accuracy and time. The
scalability of MCMM is proved by experimenting on
synthetic graphs of different sizes.
A tree based model can be altered by cutting, adding or
adjusting some of its edges, without complete information
of original data set. So MCMM has the ability of
incremental learning and hence may be suitable for stream
mining. With rapid growth of stream data and its widely
use in many areas, the application of MCMM to this fi eld
deserves extensive study in the future.

参 考 文 献

[1] Asano T, Bhattacharya B, Keil M, et al. Clustering algorithms
based on minimum and maximum spanning trees [C] // In
Proceedings of the 4th Annual Symposiumon Computational

(a) Modeling Time VS. Machines

(b) Classifi cation Time VS. Number of Objects

(c) Accuracy
Figure 12. (a) Modeling time decreases as we add more machines; (b)
MCMM outperforms KNN by a large margin, and achieves nearly the
same accuracy (shown in (c))

集 成 技 术 2013 年 82

Geometry, 1988: 252-257.

[2] Awerbuch B. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election and related
problems [C] // Proceedings of 19th Symposium on Theory of
Computing, 1987: 230-240.

[3] Cormen T H, Leiserson C E, Rivest R L. Introduction to
Algorithms [M]. The MIT Press: Massachusetts, 1990.

[4] Cover T M, Hart P E. Nearest Neighbor Pattern Classifi cation [J].
IEEE Transactions on Information Theory, 1967, IT-13: 21-27.

[5] Dehne F, Götz S. Practical parallel algorithms for minimum
spanning trees [C] // In Workshop on Advances in Parallel and
Distributed Systems West Lafayette, 1988: 366-371.

[6] Faloutsos M. Corrections, improvements, simulations and
optimstic algorithms for the distributed minimum spanning tree
problem [D]. Master’s Thesis University of Toronto, 1995.

[7] Gabow H, Spencer T, Rarjan R. Effi cient algorithms for fi nding
minimum spanning trees in undirected and directed graphs [J].
Combinatorica, 1986, 6(2): 109- 122.

[8] Gower J C, Ross G J S. Minimum spanning trees and single-
linkage cluster analysis [J]. Applied Statistics,1969, 18: 54-64.

[9] Grygorash O, Zhou Y, Jorgensen Z. Minimum spanning tree
based clustering algorithms [C] // Proceedings of the 18th IEEE
International conference on tools with Arti_cial Intelligence,
2006: 73-81.

[10] Huang Z X, Ng M K, Lin T, et al. An interactive approach
to building classification models by clustering and cluster
validation [C] // Proceedings of the Second International
Conference on Intelligent Data Engineering and Automated
Learning, Data Mining, Financial Engineering, and Intelligent
Agents, 2000: 23-28.

[11] Juszczak P, Tax D M J, Pekalska E, et al. Minimum spanning
tree based one-class classifier [J]. Neurocomputing, 2009,
72:1859-1869.

[12] Kang U, Tsourakakis C, Appel A, et al. Hadi: Fast Diameter
Estimation and Mining in Massive Graphs with Hadoop [M].
Carnegie Mellon University, 2008.

[13] Kang U, Tsourakakis C E, Faloutsos C. PEGASUS: a peta-scale
graph mining system implementation and observations [C] //
Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining, 2009: 229-238.

[14] Karger D, Klein P, Tarjan R. A randomized linear-time algorithm
to fi nd minimum spanning trees [J]. Journal of the ACM, 1995,
42(2): 321-328.

[15] Karloff H, Suri S, Vassilvitskii S. A model of computation for
mapreduce [J]. Symposium on Discrete Algorithms, 2010.

[16] Kruskal J. On the shortest spanning subtree and the traveling
salesman problem [J]. American Mathematical Society, 1956:
48-50.

[17] Kyriakopoulou A, Kalamboukis T. Text classification using

clustering [C] // Proceedings of ECML-PKDD Discovery
Challenge Workshop, 2006.

[18] Li Y, Hung E, Chung K, et al. Building a decision cluster
classication model by a variable weighting k-means method [C]
// In: 21st Australasian Joint Conference on AI, LNCS, 2008:
337-347.

[19] Liang S S, Liu Y, Wang C, et al. A CUDA-based parallel
implementation of knearest neighbor algorithm [C] //
International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, 2009: 291-296.

[20] Mui J K, Fu K S. Automated classification of nucleated blood
cells using a binary tree classifier [J]. IEEE Transactions on
Pattern Analysis and Machine Intel- ligence, 1980, 2(4): 429-443.

[21] Preparata F, Shamos M. Computational Geometry: An
Introduction [M]. Springer-Verlag: New York, USA, 1985.

[22] Vathy-Fogarassy A, Feil B, Abonyi J. Minimal Spanning Tree
Based Fuzzy Clustering [J]. ENFORMATIKA Transactions on
Engineering, Computing and Technology, 2005, 8: 7-12.

[23] Venner J. Pro Hadoop [M].1st Edition, Apress, 2009.

[24] Victor S P, Peter S J. A novel minimum spanning tree based
clustering algorithm for image mining [J]. European Journal of
Scientifi c Research, 2010, 40(4): 540-546.

[25] Weinberger K Q, Blitzer J, Saul L. Distance metric learning for
large margin nearest neighbor classifi cation [J]. The Journal of
Machine Learning Research, 2009, 10(12): 207-244.

[26] White T. Hadoop: The Defi nitive Guide [M]. O’Reilly Media,
2009.

[27] Wu B Y, Chao K M. Spanning Trees and Optimization Problems
[M]. Chapman & Hall/CRC Press: USA, 2004.

[28] Xing E P, Ng A Y, Jordan M I, et al. Distance metric learning,
with application to clustering with side-information [C] //
Proceedings of Neural Information Processing Systems, 2002:
505-512.

[29] Xu Y, Olman V, Xu D. Minimum spanning trees for gene
expression data clustering [J]. Genome Informatics, 2001, 12:
24-33.

[30] Zhang B, Srihari S N. Fast k-nearest neighbor classification
using cluster-based trees [J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2004, 26(4): 525-528.

[31] Zhou L, Wang L, Ge X, et al. A clustering-Based KNN improved
algorithm CLKNN for text classifi cation [C] // 2nd International
Asia Conference on Informatics in Control, Automation and
Robotics, 2010: 212-215.

[32] Hadoop [EB/OL]. http://hadoop.apache.org/.

[33] WEKA. Weka 3: Data mining software in java [EB/OL]. http://
www.cs.waikato.ac.nz/ml/weka/.

[34] Hettich S, Blake C L, Merz C J. UCI repository of machine
learning databases [EB/OL]. http://www.ics.uci.edu/ mlearn/
MLRepository.html.

