基于模糊逻辑算法的纯电动客车起步加速能力 优化与再生制动控制

胡坚耀1 吴正斌1 邓先泉2 全颂华2

¹(中国科学院深圳先进技术研究院电动汽车研发中心 深圳 518055) ²(深圳市五洲龙汽车有限公司 深圳 518116)

摘 要 日益严重的环境问题促使城市交通向着清洁、高效和可持续的方向发展,同时也促进了新能源交通技术的推广和应用。随着电池和电机驱动技术的发展,纯电动客车也受到越来越多的关注。起步加速能力和可再生制动是纯电动公交车区别于传统内燃机车的两个方面。由于加速踏板信号响应与驱动电机响应较快,理论上纯电动客车的加速性能要优于传统内燃机车。再生制动是一种降低能耗、提高续驶里程的重要技术手段。文章基于模糊逻辑算法,设计了驱动扭矩控制策略对驱动工况下的纯电动客车起步加速能力进行优化。同时,针对纯电动客车制动工况设计了能量回收策略。结果表明,驱动扭矩控制策略可使纯电动客车起步加速时间从 19.7 s 减小至 19.25 s,制动能量回收策略在中国典型城市公交路况下使能量消耗减少 11%。

关键词 纯电动客车;加速性能;制动能量回收;模糊控制 中图分类号 TG 156 文献标志码 A

Acceleration Performance Optimization and Regenerative Braking Control for Battery Electric Bus Based on Fuzzy Logic Algorithm

HU Jianyao¹ WU Zhengbin¹ DENG Xianquan² QUAN Songhua²

¹(Electric Vehicle Research and Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China) ²(Shenzhen Wuzhoulong Motors Co., Ltd., Shenzhen 518055, China)

Abstract Increasingly serious environmental problems have prompted the city traffic to the clean, efficient and sustainable directions, and have also accelerated the popularization and applications of the new energy transport technology. With the development of the battery and motor drive technology, battery electric buses have drawn extensive concerns. Starting acceleration performance and regenerative braking capability are two advantages of battery electric bus compared to traditional vehicles. Because of quick responses of the accelerator pedal signal and drive motor, the acceleration performance of battery electric bus is superior to the traditional diesel bus theoretically. The regenerative braking is an important technique to save energy consumption and extend the drive range. In this paper, based on the fuzzy logic algorithm, we designed a driving torque control strategy for decreasing the starting acceleration time. Meanwhile,

收稿日期: 2014-10-15 修回日期: 2014-11-4

基金项目:国家新能源汽车产业技术创新工程整车项目(Y3Z0221001);广东省省院合作项目(2011B090300095,2012B09040018); 深圳市科技 研发项目(CXZZ20130322161447244)

作者简介:胡坚耀,博士研究生,研究方向为纯电动汽车和双能量源混合动力汽车的能量管理与优化控制;吴正斌(通讯作者),博士,研究员,博士生导师,研究方向为动力和储能电池系统集成和应用技术、新能源汽车动力系统和整车集成与优化技术,E-mail: zb.wu@siat.ac.cn; 邓先泉,高级工程师,研究方向为整车集成与优化技术;全颂华,工程师,研究方向为新能源汽车动力系统优化。

the regenerative braking control strategy is reported. The results show that, the driving torque control strategy can decrease acceleration time and the regenerative braking strategy can save energy consumption by 11% during the Chinese city bus driving cycles.

Keywords battery electric bus; acceleration performance; regenerative braking; fuzzy logic control

1 引 言

随着技术的不断创新与突破, 面对金融危 机、油价攀升和日益严峻的节能减排压力,2008 年以来,以美国、日本、欧盟为代表的国家和地 区相继发布实施了新的电动汽车发展战略,进一 步明确了产业发展方向,明显加大了研发投入与 政策扶持力度^[1]。从环保角度来看,电动汽车是 零排放的市区交通工具,即使计入发电厂增加的 排气,总量上也将使空气污染大大减少。从能源 角度来看,电动汽车将使能源的利用多样化和高 效化,达到能源的可靠、均衡和无污染利用的目 的。电动汽车的发展将使集中考虑能源、环保和 交通综合优化成为可能,而且,它对于促进高科 技的发展、新兴工业的兴起以及经济的发展将产 生深远的影响^[2,3]。当前,我国纯电动公交客车发 展迅速,对其研发投入也持续提高。各大汽车企 业如五洲龙、比亚迪、京华、中通、安凯、天津 清源等都在大力发展纯电动公交车。但由于纯电 动客车电池成本高、续驶里程较短等原因,短时 间内大规模商业化仍有许多亟待解决的课题。

电池技术至关重要,电机驱动技术、能量管 理策略等的影响也不容忽视。电机及其控制系统 是电动汽车的心脏,决定着车辆运行和再生制动 的能力^[4]。同样,设计合理而有效的整车控制策 略能够优化动力源的运行效率,达到减少能耗、 提高续驶里程等目的。近年来,模糊逻辑方法被 成功引入到车辆控制和能量管理领域中^[5],它可 以通过与多种简单函数相结合,实现复杂汽车系 统的非线性输入-输出关系。实践证明,模糊控制理论不依赖于被控对象的精确数学模型,同时 又不拒绝有效的数学模型,用它来处理那些未定 义或者难以精确建模的复杂过程,是一种非常有 效的方法^[68]。

加速时间作为汽车动力性三大指标(最高车 速、加速时间、最大爬坡度)之一,对平均行驶车 速有很大的影响。制动能量回收对降低纯电动客车 能耗,改善其经济性能有十分重要的作用。纯电动 客车的加速性能主要与电机性能有关,采用线性踏 板驱动控制策略而没有充分考虑驾驶员对电机扭矩 的需求,对动力性的提升并不明显^[9-11]。电动汽 车制动能量回收以及能量控制的研究尚处于起步 阶段,电动汽车的再生制动系统、车辆制动动力 学已进行建模^[12-15],但再生制动系统仿真、实 验模拟和综合评价等还有待深入研究。

本文就纯电动客车驱动控制与制动回收这两 个关键技术,基于模糊逻辑方法,设计相应的控 制策略。仿真结果表明,驱动控制策略有利于提 升纯电动客车的加速性能,制动能量回收策略可 提高能量效率,延长续驶里程。这两种策略可为 整车控制器的设计提供参考作用。

2 理 论

2.1 电机驱动扭矩控制

在纯电动客车中,电机驱动系统一般由电 机、功率转换器和电子控制单元组成。其中,电 机是以磁场为媒介进行电能和机械能转换的电磁 装置。在电动汽车驱动过程中,驱动电机作为唯 一的驱动装置输出动力,将从储能装置中获得的 电能转化为机械能从而驱动车轮。功率转换器在 电子控制单元的控制下输出特定的电压和电流, 以产生电机所需的转矩和转速。与内燃机相比, 电机的优势是其在低转速时可以提供峰值转矩, 而且其瞬时额定功率可以达到内燃机额定功率的 2~3倍,这些可以为车辆带来出色的加速性能, 同时在减速或制动时还可以实现再生制动。当纯 电动客车驱动时,整车控制器接受加速踏板信 号、挡位信息等,按制定的策略输出驾驶员需求 扭矩指令,最后由驱动电机转化为实际的转矩输 出。加速踏板给出的信号与当前车速、路况、蓄 电池当前储能状况有关,这些难以用一个准确的 数学模型描述。因此,可运用模糊逻辑控制器来 解决,并实现 MAP 图控制。

当电机转速小于电机基转速时,电机的基本 需求扭矩

$$T_e = APP \cdot T_{n_{\text{max}}} \tag{1}$$

当电机转速介于电机基转速与最大转速时, 电机的基本需求扭矩

$$T_e = APP \cdot T_{n_{\text{max}}} \cdot n_e / n \tag{2}$$

式(1)、(2)中, T_e 为电机基本需求扭矩;*APP*为加速踏板开度; $T_{n_{max}}$ 为某转速下电机输出的最大扭矩; n_e 为电机的基转速。

2.2 能量消耗与续驶里程

对于纯电动客车,通常以 kWh/km 度量每单 位距离所消耗的能量。实际上,对于配置蓄电池 的电动汽车,度量蓄电池输出端所测定的原始能 量消耗更为合理。蓄电池能量的定额一般以 kWh 测定,即能容易按蓄电池容量计算出行驶路程。 能量消耗是蓄电池端输出功率积分的过程,蓄电 池的输出功率可表达为

$$P_{b} = \frac{v}{\eta} \left(M_{v}g(f_{r}+i) + \frac{1}{2}\rho C_{D}A_{f}v^{2} + M_{v}\delta\frac{\mathrm{d}v}{\mathrm{d}t} \right)$$
(3)

其中, P_b 为蓄电池的输出功率; v 为车辆的速

度; M_i 为车辆的总质量; g 为重力加速度; δ 为 动力系中表征旋转组件效应的质量系数; f_r 为滚 动阻力系数; i 为坡度; ρ 为空气密度; C_D 是表 示车辆形状的空气阻力系数; dv/dt 为沿纵向车辆 的线加速度; A_f 为车辆迎风正面面积。

蓄电池端的再生制动功率

$$P_{in} = \frac{\alpha v}{\eta} \left(M_{v}g(f_{r}+i) + \frac{1}{2}\rho C_{D}A_{f}v^{2} + M_{v}\delta\frac{\mathrm{d}v}{\mathrm{d}t} \right)$$
(4)

其中, α(0<α<1) 是由电动机供给的总制动能量 的百分率,成为再生制动系数。

续驶里程为纯电动客车动力蓄电池组两次充 足电之间的总行驶里程。其影响因素有:行驶的环 境状况、行驶规范、蓄电池的性能、滚动阻力与空 气阻力消耗的能量、客车的总质量、辅助装置的能 量消耗。其中,行驶的环境状况一般指气温的高 低、风力的方向与大小、道路的种类与交通拥挤 情况;行驶规范指预先确定的行驶速度与时间的变 化关系图线,除使用多工况道路循环试验法外,单 一恒速工况试验也是一种试验方法; 蓄电池的性能 参数有能量密度、额定容量、放电率、放电电流、 放电深度、蓄电池内阻, 电池组的一致性及环境温 度也是影响电动汽车行驶的能量消耗和续驶里程的 重要因素;客车的总质量越大,消耗的功率和能量 就越高,它们之间呈线性比例关系,增加电动汽车 的电池数量,一方面可以增加电动汽车的总能量储 备和续驶里程,另一方面也大大增加电动汽车的总 质量,又会增大电动汽车的能量消耗,降低电动汽 车的续驶里程,这就涉及到动力驱动传动系统的最 佳匹配问题;辅助装置一般指制动系统的空气压缩 机、转向系统的油泵,还有照明、取暖、音响、通 风、空调等,除空调外,该部分能耗占电动汽车总 能耗的 6%~12%。

设电动汽车蓄电池充满电之后的总能量为E(kWh),则电动汽车的续驶里程S为

$$S = \frac{E}{e} = \frac{E}{e_0 \cdot M_v} \tag{5}$$

$$e_0 = \frac{E}{M_v} \tag{6}$$

其中, e 为电动汽车行驶单位里程能耗; e₀ 为行 驶比能耗。

再生制动回馈测试可以通过三种方法:整车 上的测试、惯性轮装置测试和直接用发电机试 验。其中,直接用发电机试验是较为常用的方 法。但电动汽车电机再生制动回馈因车型、结构 形式、控制策略不同而不同,再生制动工况也变 化各异,因此再生制动能量试验一般也只能提供 整车设计参考。

2.3 模糊逻辑系统

模糊逻辑是 Lotfi Zadeh 在 1965 年提出,是 从模糊集理论演化而来的多数值逻辑形式,可用 来处理不精确和信息粒度。模糊逻辑控制策略本 质上属于基于规则的控制策略,是将经典数理逻 辑与模糊数学相结合,模拟人思维的推理和决策 方式的智能控制方式^[16]。模糊推理系统(Fuzzy Inference System, FIS)结构如图 1, 它包含模糊 化接口、数据库、规则库、决策单元和去模糊 化接口。模糊化接口将输入的精确量转化成模糊 量。数据库定义模糊集的隶属函数,从而建立模 糊规则。规则库给出所需要的模糊规则,它是模 糊控制器的核心,反映了如何处理一个特定控制 问题的知识收集。决策单元在模糊规则的基础上 进行推理,去模糊化接口将推理结果转换成输出 的精确量。当前的模糊推理方法主要有 Mamdani 方法和 Sugeno 方法^[17]。本文使用 Mamdani 方

法, 它可以提高去模糊化过程的效率。

3 仿真试验

本文研究对象为深圳市五洲龙汽车有限公司 生产的纯电动客车 FDG6113EVG,如图 2 所示。

Fig. 2 Battery electric bus

纯电动客车采用磷酸铁锂动力电池组,直驱 式高比功率和大扭矩的永磁同步电机,高效低能 耗的电动化辅助系统(电动空调、电动转向系统 和电动供气系统)。车辆同时加入了五洲龙自主 研发的运程信息监控平台,实现了车辆安全运 行、及时维护和设计数据积累。客车及主要组件 参数见表 1。图 3 为纯电动客车所用永磁同步电 机的转速、扭矩、效率 MAP 图(只作出转速大于 500 rpm 的状况)。

Fig. 3 Efficiency map of electric motor

纯电动客车仿真试验按以下步骤进行:首 先建立客车整车 AVL Cruise 仿真模型,然后在 Simulink 中制定驱动扭矩控制策略及能量回收 控制策略,最后进行 Cruise 传动系动力模型与 Simulink 控制策略的联合仿真。

	表1 纯电动客车	 「参数			
Table 1 Specifications of battery electric bus					
	参数	数值			
	长×宽×高(mm×mm×mm)	11490×2480×3180			
	整备质量(kg)	13500			
	整车轴距(mm)	6000			
	迎风面积(m²)	6.5			
+4-1-	滚动阻力系数	0.016			
登牛	空气动力系数	0.75			
	车轮半径(mm)	507			
	最大速度(km/h)	80			
	最大爬坡度(%)	18			
	综合工况续驶里程(km)	200			
	单体电压(V)	3.2			
	单体容量(Ah)	5			
动力	单体能量密度(Wh/kg)	130			
电池	单体质量(g)	145			
	单体串/并数量	168/108			
	电池组总电压(V)	537.6			
	额定电压(V)	540			
	额定功率(kW)	100			
永磁	峰值功率(kW)	200			
回 <i>亚</i> 电机	最大转速(r/min)	3000			
<u> </u>	峰值扭矩(Nm)	2500			

3.1 驱动扭矩控制策略

基速(rpm)

加速踏板开度在起步加速时反映驾驶员的起 步意图。开度突然增大表明驾驶员希望驱动电机 提供更大的起步扭矩,满足其急起步并期望加速 到目标车速的要求。开度变动很小时,为了避免 大的冲击并控制车辆的运行状态,驱动扭矩不应 发生剧烈变化。驱动扭矩控制的简化结构框图如 图 4 所示,该控制策略可以根据加速踏板开度及 其变化率,确定驾驶员的驾驶意图,并根据模 糊控制器确定驱动电机的补偿扭矩以满足起步 加速的电机扭矩需求。图 4 中 acc_pedal 为加速 踏板开度,acc_pedal_ratio 为加速踏板开度变化 率,motor_speed 为电机转速,FLC 为模糊逻辑 控制,pedal MAP 为一定电机转速下,加速踏板 开度与电机驱动扭矩的变化图,trq_max 限定电

800

Fig. 4 Block diagram of the torque control strategy

机的最大扭矩。电机扭矩增加后,其信号对电 机进行控制。该模糊控制器的隶属度函数如图 5 所示。

strategy

在该驱动扭矩控制策略中,模糊控制器的输

入量加速踏板开度与加速踏板开度变化率隶属函数范围被规范为0和1之间的一个数(0代表踏板 未被压下,1代表踏板全部压下),都被分成小、 中、大和最大4个等级。根据驱动电机的响应时间 进行计算,扭矩增加量范围为0~315 Nm,因此, 该扭矩补偿量为0和315之间的一个数,此处论 域设为10,被分为最小、小、中、大和最大5个 等级。该模糊控制器的模糊规则表如表2所示。

表 2 模糊规则表 Table 2 Fuzzy control rules

	加速踏板开度变化率					
加速硝极开度	小	中	大	最大		
小	最小	中	大	最大		
中	最小	小	中	大		
大	最小	小	小	中		
最大	最小	最小	小	小		

3.2 制动能量回收控制策略

传统汽车在踩下制动踏板使车辆减速或停止 的过程中,车辆的动能经摩擦产生热能而耗散 掉。电动汽车的制动系统结构是在传统汽车机械 制动的基础上加上电制动系统。如果采取单一的 电制动方式,车辆行驶的安全性并不能得到保 证。采取双重制动相结合的方式,就需要制定制 动力的分配系数,同时为制动能量回收控制策略 提出要求。

对于电动汽车来说,当进行制动时,电机的 作用就相当于发电机,把车轮的动能回收到蓄电 池中,达到增加续驶里程的目的。此时整车控制 器根据踏板信息、电机状态、电池荷电状态 SoC 和车辆信息计算出制动减速度,根据相应的控制 策略,进行制动回馈。电机的扭矩特性决定了可 提供的电制动力的大小。扭矩越大,可提供的制 动力越大,回收的能量越多;此外,制动时电机 起到发电机的作用,其发电功率的大小,直接影 响储能系统的充电功率,也就影响回收能量的多 少。电机的工作温度及效率、蓄电池的充电功率 也非常关键。

本文设计的制动能量回收策略如图 6 所示。 策略中以当前车速和蓄电池荷电状态 SoC 作为模 糊控制器的输入,根据输入来确定制动力分配比 例系数 K。此后根据总制动力与当前的制动减速 度来确定再生制动力,最后由电机回馈到蓄电池 之中。当紧急制动时,为了保证制动的安全性, 应采取机械制动。车速较低时再生制动的安全性, 速增加时再生制动也相应增加。当前的电池 SoC 较高时,为了保护电池,需减少再生制动力回馈 比例。

Fig. 6 Flowchart of the regenerative braking control

strategy

该制动能量回收策略中,模糊控制器的输入 量当前车速、电池 SoC 和制动力分配系数被划分 为小、中、大三个状态。其中,电池 SoC 和制动 力分配系数的论域为 0 到 1,车速为 0 到 80。该 模糊控制器的输入、输出隶属度函数示意图如图 7 所示。制定制动能量回馈模糊规则时,在保证 整车的安全性与舒适性的同时应回收较多的制动 能量。根据大量的仿真试验,总结出模糊规则表 如表 3 所示。当车速小、电池 SoC 小时,制动力 分配系数小;当车速大、电池 SoC 大时,制动力 分配系数小;当车速大、电池 SoC 大时,制动力

strategy 表 3 模糊规则表

Table 3 Fuzzy con	trol rules
-------------------	------------

左油		电池 SoC	
干坯	小	中	大
<u>ب</u> ل	小	小	小
中	中	中	小
大	大	大	小

4 结果与讨论

4.1 驱动扭矩控制结果

图 8 中给出了不同电机转速(不同车速)下的

加速踏板开度与电机扭矩关系图。图中实线为实 车的实验数据,虚线为根据驱动扭矩控制策略仿 真得到的仿真结果数据。实车测试时将电机转 速设定在 200~2200 rpm, 以观察加速踏板对 电机扭矩的影响。由于篇幅关系,本文仅给出 200 rpm、400 rpm 和 600 rpm 的数据,但分析结 果对其他的电机转速同样适用。结果表明,在这 三种电机转速下,驱动扭矩控制策略能够使电机 扭矩增加,无论是实车扭矩数据还是通过驱动扭 矩控制策略优化后的扭矩,都与加速踏板开度呈 正线性关系。同时,在一定踏板开度下,电机的 扭矩与电机转速成反比关系。文中所用电机的峰 值扭矩为 2500 Nm。图 8 中驱动控制策略表明, 当完全踩下加速踏板时(踏板开度 100%), 电机 的扭矩不超过 2500 Nm, 这是控制策略中对电机 扭矩进行了限制。

Fig. 8 Relationship between accelerating pedal and

torque of motor at various speeds

表 4 中给出了 0~50 km/h 的起步加速时间 值,其中包括实车实际测试结果(A),未施加驱 动扭矩控制策略的仿真结果(B)和施加驱动扭矩 控制策略的仿真结果(C)。由结果对比可知,驱 动扭矩控制策略能使该仿真模型 0~50 km/h 起 步加速时间提高 0.45 s。王佳等^[9]的研究结果显 示,在 0~40 km/h 加速时间下动力模式(3.8 s) 比常规模式(4.8 s)提高了 1 s;周孟喜^[11]的研究 结果也显示, 0~50 km/h 的加速时间从 7.3 s 提 升了 0.8 s。由于这两处文献研究的对象都是小轿 车,所以其加速提升时间比本文的纯电动公交车 要大也较合理。

表4 0~50 km/h 加速时间表

Table 4Acceleration time from 0 to 50 km/h

	А	В	С
0~50 km/h 起步加速时间(s)	20	19.7	19.25

4.2 制动能量回收控制结果

本文采用中国典型城市公交车行驶工况来检 验制动能量回收控制策略的效果。图 9 为中国城 市工况时间与速度、加速度关系,该工况的参数 值如表5所示。

为了节省计算时间,截取一段 380 s 的工况 进行仿真,此工况有5个不同加减速循环,可以 用来检验制动能量回收也有一定的代表性。图 10 为该策略下的电机扭矩图。从图中可以看到,当 纯电动客车减速时, 电机的扭矩为负值, 此时电 机相当于充电机向电池充电。表 5 为该 380 s 工 况下的 100 km 能量消耗。由于此 380 s 工况的 最高车速不到 45 km/h,因此 100 km 能量消耗 较少。从表 6 中可知,使用制动能量回收控制 策略之后,能量消耗从 68 kWh/100 km 降低到 60.49 kWh/100 km, 能量消耗减少率为 11%。

中国城市工况参数表 表 5

Fable 5	Chinese	citv	bus	drive	cvcle	parameters
	CHINCSE	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			~,~	parameters

23

参数名称	参数指标
总行驶时间(s)	1306
平均速度(km/h)	16.1
最高车速(km/h)	60
平均行驶车速(km/h)	16.27
总行驶里程(km)	5.84
最大加速度(m/s²)	0.91
平均加速度(m/s²)	0.3
最大减速度(m/s²)	-1.04
平均减速度(m/s ²)	-0.42
怠速时间(s)	366
停止次数	13

表 6 380 s 工况 100 km 能量消耗表

Table 6Energy consumption at 380 s road cycle

	无能量回收	有能量回收	能量消耗减少率
能量消耗 (kWh/100 km)	68	60.49	11%

5 总 结

模糊控制算法是实现纯电动客车能量管理控 制、优化的有效方法之一。文中所设计的驱动扭 矩控制策略能够通过控制驱动电机的输出扭矩实 现纯电动客车起步加速性能的提升。制动能量回 收控制策略通过合理分配制动力,从而降低能量 消耗。文中所设计的两种控制策略已在计算仿真 上验证了可行性,将通过实车测试进行验证和进 一步改进。

参考文献

- [1] 中华人民共和国科学技术部.电动汽车科技发展 "十二五"专项规划(国科发计(2012)195号)
 [EB/OL].[2014-11-3].北京:中华人民共和国科 学技术部,2012. http://www.gov.cn/zwgk/2012-04/20/content_2118595.htm.
- [2] 陈清泉,孙逢春,祝嘉光.现代电动汽车技术 [M].北京:北京理工大学出版社,2004:1-2.
- [3] 王震坡, 孙逢春, 刘鹏. 电动汽车原理与应用技术 [M]. 北京: 机械工业出版社, 2014: 2-3.
- [4] Ehsani M, Gao YM, Emadi A. 现代电动汽车、混 合动力电动汽车和燃料电池车——基本原理、 理论和设计 [M]. 倪光正, 倪培宏, 熊素铭译. 北 京: 机械工业出版社, 2008: 118-120.
- [5] Zhang X, Mi C. 车辆能量管理: 建模、控制与优化 [M]. 张希, 米春亭译. 北京: 机械工业出版社, 2013: 171-180.
- [6] Tie SF, Tan CW. A review of energy sources and energy management system in electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2013, 20: 82-102.
- [7] Hemi H, Ghouili J, Cheriti A. A real time fuzzy logic power management strategy for a fuel cell vehicle [J]. Energy Conversion and Management, 2014, 80: 63-70.
- [8] Solano MJ, Mulot J, Harel F, et al. Experimental

validation of a type-2 fuzzy logic controller for energy management in hybrid electrical vehicles [J]. Engineering Applications of Artificial Intelligence, 2013, 26(7): 1772-1779.

- [9] 王佳,杨建中,蔡志标,等.基于模糊控制的纯电 动轿车整车优化控制策略 [J].汽车工程,2009, 31(4):362-365.
- [10] 王立国. 纯电动客车动力总成控制策略研究 [D]. 长春: 吉林大学, 2009.
- [11] 周孟喜. 电动汽车驱动工况下的整车控制策略研 究 [D]. 重庆: 重庆大学, 2012.
- [12] Nian XH, Peng F, Zhang H. Regenerative braking system of electric vehicle driven by brushless DC motor [J]. IEEE Transactions on Industrial Electronics, 2014, 61 (10): 5798-5808.
- [13] Budde-Meiwes H, Drillkens J, Lunz B, et al. A review of current automotive battery technology and future prospects [J]. Proceedings of the Institution of Mechanical Engineering, Part D: Journal of Automobile Engineering, 2013, 227(5): 761-776.
- [14] Bayar K, Biasini R, Onori S, et al. Modelling and control of a brake system for an extended range electric vehicle equipped with axle motors [J]. International Journal of Vehicle Design, 2012, 58 (2-4): 399-426.
- [15] 汪贵平. 纯电动汽车驱动与制动能量回收控制策 略研究 [D]. 西安: 长安大学, 2009.
- [16] Kovacic Z, Bogdan S. 模糊控制器设计理论与应用 [M]. 胡玉玲, 张立权, 刘艳军, 等译. 北京: 机械工业出版社, 2010: 1-7.
- [17] 王立新. 模糊系统与模糊控制教程 [M]. 王迎军 译. 北京:清华大学出版社, 2003: 75-76.