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Abstract The Internet of Things realizes the connection of human and objects. Activity recognition is 
necessary for the interaction between information sensing devices and human. Currently, vision-based and 
sensor based methods are widely used, but these methods are limited in many scenes. In this paper, a new 
radio-frequency-based activity recognition technique was proposed, in which a few communication nodes were 
deployed in the monitoring area for the device-free activity recognition by analyzing the transmission packet 
state information. The sequential minimal optimization and K-nearest neighbor algorithms were employed for 

average compared to the traditional method based on received signal strength indication.
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Fig. 1 The communication module for activity recognition
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Fig. 3 Filtering noise of packet receive rate sequence
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Fig. 2 Employ overlapped window on packet state series

and calculate the packet receive rate
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Fig. 4 Diagram for the adjacent decoded packets
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Fig. 5 The test bed of our experiment for activity

recognition
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Fig. 6 The classi cation accuracy of moving directions

based on the data collected from different subjects
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Fig. 9 Loc of four speed
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Fig. 7 acf of four speed
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Fig. 11 The classi cation accuracy of different moving

speeds with different transmission speed
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Fig. 12 The precision of distinguish different speed by the

methods mentioned above
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