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1 Introduction

Intracranial hemorrhage (ICH) is one of the most 

common causes in adult acute neurologic injury, 

and it attracts much research attention for its high 

mortality and poor prognosis. It is a multi-factorial 

disorder with heterogeneous etiologies and may 

have potentially long-term debilitating outcomes
[1-3]

.

Cerebral edema is an important secondary brain 

injury after ICH. Major factors contributing to the 

death in acute stage of spontaneous ICH caused by 

edema are intracranial hypertension and cerebral 

hernia
[4]

. Timely and effective diagnose and control 

of cerebral edema could help to reduce the mortality 

rate and prevent intracranial hypertension and 

cerebral hernia. 

The mechanism of edema formation after ICH 

has not been fully understood
[5]

. Cerebral edema 

is present in most patients with ICH when imaged 

within 6 hours from onset, reaches the peak between 

48 hours and 7 days, and is absorbed after 4 to 6 

weeks
[6]

. Non-contrast computed tomography (CT) 

head scans remain the first choice for diagnosing 

ICH. However, on head CT scans, it is difficult to 

delineate edema regions due to substantial overlap 

of grayscale ranges between the edema and the 

neighboring cerebrospinal fluid (CSF) as well as 

white matter (WM), and unclear image boundaries. 

The major edema regions are low grayscale regions 

around hematoma within 1 centimeter radius
[7]

.

Research on detection and quantification of 

cerebral edema after ICH from CT is relatively 

sparse. Bardera et al.
[8]

 employed a semi-automated 

method based on level set to achieve a matching 

Abstract Segmentation of cerebral edema from computed tomography (CT) scans for patients with intracr-
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ratio of 0.65. Volbers et al.
[9]

 studied CT thresholds 

for edema to be 5-33 Hounsfield units using 

manually drawn hematoma from T2-weighted 

magnetic resonance (MR) images. Loncaric et al. 

employed a fuzzy expert system
[10]

 and a hierarchical 

segmentation method
[11]

 for edema segmentation. 

The last two studies did not report accuracy. We 

recently proposed to segment edema through region 

growing using advanced features such as local 

adaptive threshold and two dimensional entropy to 

yield an average Dice coefficient of 0.789
[12]

. The 

to segment edema from CT images.

T2-weighted MR imaging (MRI) has been proved 

to be beneficial to cerebral edema diagnosis in 

human stroke for decades, and has been the gold 

standard for accurate quantification of cerebral 

edema
[13]

. Unfortunately, application of MRI to 

assessing ICH is limited mainly due to its long 

imaging time (which is the main obstacle as ICH 

often needs urgent treatment), high cost and less 

availability than CT. Currently, CT is still preferred 

for assessing ICH patients due to its short imaging 

time, high sensitivity to hematoma, wide availability, 

and lower cost even though it could not show clear 

boundary of edema after ICH. It is thus of critical 

importance to enhance the delineation accuracy of 

edema from CT images. 

This study is motivated by a postulation that the 

delineation accuracy of edema on CT images may be 

enhanced by adding additional constraints on the CT 

candidate edema regions through modeling features 

from patients with both CT and T2-weighted images.

Support vector machine (SVM) is a widely used 

supervised learning method due to its good 

generalization capability from a few training 

samples
[14-17]

, which will be employed for learning 

In this study, we propose to segment edema on CT 

images using model learned from 14 patients with 

both CT and T2-weighted images. The 14 ground-

truths of cerebral edema on T2-weighted images 

manually drawn by radiologists are cast into CT 

space through affine transformation to learn the 

three features are devised to represent features of the 

edema including grayscale features, texture features 

and edge features, which are decreased to 60 features 

after feature selection based on common subspace 

(CS) measure. The method is then validated against 

36 clinical CT scans presenting ICH and compared 

with other scenarios of classifiers, region growing 

method
[12]

, semi-automated level set method
[8]

, and 

threshold based method
[9]

.

The rest are organized as follow. In Section 2, 

the method and materials are presented. In Section 

3, the experiment results are given and compared 

with other methods. Discussion and conclusion are 

presented at last.

2 Method and materials

Fifty patients from Linyi People’s Hospital of 

China were recruited for this study. The study was 

approved by the Institutional Review Board of 

the hospital. All patients gave written consent and 

provided permission for scientific and educational 

purpose. The patients were diagnosed with ICH and 

imaged within 6 hours to 2 weeks (43 within acute 

stage (within 72 hours) and 7 within subacute stage 

(72 hours to 2 weeks)). Since most CT and MRI 

data are not simultaneously available due to the 
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restriction of medical ethics, only 14 patients who 

were not suitable for surgery or were reluctant to 

have surgery, were imaged first with CT followed 

by T2-weighted MRI scans with a time interval of 

less than 3 hours. For other patients, a non-enhanced 

head CT scan was performed. All the CT and T2-

weighted images were axial and obtained parallel 

to the orbito-meatal line. The image spacing was 

0.46 mm within axial slices, and the slice distance 

was 4.8 mm. The statistics of the patients were: age 

range [18, 87] with an average of 59 years, and 17 

female and 33 male.

The 14 patients who had both CT and MRI scans 

were chosen for training, while the rest were used 

for testing. The manual segmentation was conducted 

by expert radiologists from Linyi People’s Hospital. 

For each patient, three manual segmentations of 

hemorrhage and edema on CT/MRI scans were 

ground truth edema was composed of those voxels 

that were judged as edema by at least 2 experts.

Fig. 1 shows the flowchart of the method which 

consists of three components: 

(1)Preprocessing to derive the brain and hema-

toma, and to register the T2-weigthed images with 

corresponding CT images of the 14 patients to cast the 

ground truth edema from registered MRI to CT images;

(2)Training to learn the classification model by 

devising appropriate features, appropriate sampling, 

and optimizing parameters of SVM on CT images; 

(3)Categorizing voxels as lesion (either hema-

toma or edema) or non-lesion according to the 

to eventually derive the edema on CT images.

In the following subsections, details will be 

elaborated.

2.1 Preprocessing

On CT scans, the brain is extracted according to 



 CT  T2  CT 15

Hu’s report
[18]

 based on fuzzy C-means clustering 

and connected component analysis. On T2-weighted 

images of the 14 patients, the brain is automatically 

delineated with an in-house software followed by 

For each of the 14 patients with both CT and 

T2-weighted images, the two modalities should 

be registered to correct the difference in position, 

orientation and scale. The affine transformation 

of the 3D Slicer software is employed to register 

the T2-weighted images onto the CT space for 

each patient. Fig. 2 shows one axial slice after 

preprocessing.

2.2 SVM training

SVM training consists of feature computing, 

construction of training samples, parameter 

2.2.1  Feature computing

Grayscale information, texture information, and 

edge information in the form of histogram of 

oriented gradients (HOG)
[19]

 are taken into account. 

The feature vector at a voxel consists of initially 

63 quantities including 7 grayscale, 48 texture and 

8 HOG quantities, which will be reduced to 60 

quantities after feature selection.

2.2.1.1  Grayscale features

Inspired by the fact that human beings differentiate 

image regions according to their local contrast, we 

intend to incorporate the local contrast as one key 

grayscale feature. Due to the substantial grayscale 

overlap between edema and brain tissues, grayscale 

variability within a cerebral edema region and 

                                           (a)                                              (b)                                                  (c)                                               (d)

                                                                      (e)                                                 (f)                                                  (g)



16

between edema of different patients, as well as the 

unpredictable size of edema, the window size of 

neighborhood for calculating the local contrast of 

edema voxels is non-trivial. We have studied the 

mechanism to change the window size adaptively 

for calculating local adaptive threshold based on 

local grayscale mean and standard deviation with 

adaptively variable window size
[20]

.

The grayscale mean, median, and standard 

deviation within a neighborhood could represent 

its grayscale distribution. According to Padma’s 

report
[21]

, the size of neighborhood should generally 

be smaller than 7×7. Thus the grayscale distribution 

is calculated within 3×3 and 5×5 neighborhoods to 

be part of the feature vector.

2.2.1.2 Texture features

Here the gray level co-occurrence matrix (GLCM) 

is employed to describe the texture information 

relevant to lesion and non-lesion voxels on brain CT 

images. Following the convention, two voxels with a 

distance d and angle with respect to the x axis being 

, are involved for calculating the co-occurrence 

frequency p(i, j, d, ), where i and j are respectively 

the grayscales of the starting and ending voxels. Four 

angles (0º, 45º, 90º, 135º) are used, with the d being 

respectively  to calculate p(i, j, d, ). For 

each angle, 12 texture features are calculated from 

p(i, j, d, ) as below
[22]

.

Angular second moment (ASM): 

Contrast:

Correlation:

,

with , ,

 and  being re-

spectively the means and standard deviations of 

 and .

Inverse difference moment:  

Sum average: ,

Difference average: ,

Variance: ,

Sum variance: 

Difference variance: 

Entropy:

Sum entropy:

Difference entropy: 

2.2.1.3 HOG features

HOG captures the information related to shape 

such as edge or gradient, and HOG features are 

obtained as the histogram of local intensity gradient 

orientations h(q) at each voxel q constructed 

from the intensity gradient magnitude M(x, y) and 

orientation (x, y

gradient operator such as Sobel operator
[19]

.

The orientation of voxels (Dir) within voxel 

q’s 5×5 neighborhood (Nq) are grouped into an 

Dir0), 

Dir1), … Dir7), weighted 

by the gradient magnitude of voxels within Nq.

The gradient orientation histogram  is thus 
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calculated as: 

    

(1)

where j 0,1,2,…,7; i and M i are the gradient 

orientation and the gradient magnitude of voxel i.

The histogram  is normalized to form the final 

gradient orientation histogram:

        (2)

where  is a constant (0.05) used to enhance the 

robustness to noise.

Each of the features  is normalized into the 

range [ 1,1] at each axial slice as follow:

       
(3)

where  is the j
th
 feature at axial slice i; mi and Mj

are respectively the minimum and maximum value 

of the j
th
 feature at axial slice i, with j 1,2,…,63. 

Indices of the original feature vector are given in 

Table 1.

2.2.2 Construction of training samples

Here the segmentation is converted to a binary 

classification, with foreground for lesion including 

hematoma and edema, and background for remaining 

brain tissues. Because the number of background 

voxels is much larger than that of the foreground, 

it is necessary to only sample representative 

background voxels to have a balanced number of 

training samples. 

Edema appears as a region surrounding the 

hematoma with substantial grayscale overlap with 

the healthy brain tissues. Therefore, only voxels 

neighboring the lesion are sampled to represent the 

background. Specifically, at each axial slice with 

foreground voxels, morphological dilation is applied 

iteratively to the foreground with a disk structuring 

element of size 1 voxel until the size of the dilated 

foreground is 2.2 times the original foreground size. 

These background voxels included in the dilation 

process are then taken as the background to be 

sampled. Fig. 3 illustrates the distribution of these 

samples. Justification of the sampling strategy is 

addressed in Section 3.2. 

2.2.3 SVM parameter optimization and classifier 

training

The main idea of SVM is to search for an optimal 

hyperplane that could best separate vectors from 

the two classes by mapping the vectors into a high-

dimensional space
[23]

.

Table 1 Indices of the original 63-dimenisonal feature vector
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data xi with label yi are denoted as {xi, yj}, i 1,2,…,l,

, , where l is the number of training 

data and d is the dimension of feature vectors. 

For nonlinearly separable samples, the objective 

function to be minimized is: 

subject to , where w is 

the weight matrix for the optimal hyperplane, w
T
 is 

the transposed matrix of w, the constant C 0 is a 

trade-off parameter between the maximization of 

the margin and minimization of the classification 

error. Researchers have suggested to apply kernel 

mapping for deriving the hyperplane with maximum-

margin
[24]

. Three most widely used kernel functions 

are: linear kernel functions, polynomial kernel 

functions and radial basis functions with following 

equations
[25]

: linear kernel functions ;

polynomial kernel functions 

;  an d  r ad i a l  b a s i s  f u n c t i o n s  

.

Appropriate selection of the kernel function is 

crucial for SVM training. To choose the appropriate 

kernel function, on the 14 data with both CT and T2-

weighted images, we randomly take two-thirds of 

the training samples for training and the remaining 

one-third training samples for testing the accuracy 

of classification (the percentage of the correctly 

functions yield the best accuracy and are employed 

Penalty factor C and the parameter  are two 

important parameters of the radial basis functions. 

We employ cross validation to optimize them 

using LIBSVM tool box
[26]

. With the SVM training 

parameters being optimized as C 64 and 0.025,

positive samples as the CT voxels within the lesion 

weighted images, negative samples as the CT voxels 

around the lesion detailed in Section 2.2.2, the 

classification model is attained using 14 data with 

both CT and T2-weighted scans.

2.2.4 Feature selection

To enhance classification accuracy and avoid 

Fig. 3 Construction of training samples: (a) an original brain image; (b) the sketch map of sampling: all voxels of the 

foreground are taken as the postive sample (marked ) , while negative samples are chosen from neighboring voxels (marked 

within the green circle); (c) samples of (a) according to (b) (gray for postive samples, and white for negative samples)
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overfitting, feature selection is employed using CS 

measures
[27]

. The CS measure originates from the 

unique vector of each class, called common vector. 

The common vector is composed of the projection 

of the average feature vector of a class onto its 

own indifference subspace, which is spaned by 

eigenvectors to zero (or small) eigenvalues of the 

within-class covariance of each class. Specifically, 

the CS measure is computed as follow: 1) the 

average feature vector of one class is projected onto 

indifference subspace of other classes; 2) distances 

between the average feature of the projected class and 

the common vector of other classes are computed for 

each feature of the feature vector. The CS measure 

will yield a high value for the feature with high 

discriminative power and low value otherwise.

After the CS measure is obtained, features are 

sorted in descending discriminative power. After 

feature selection, 60 features are chosen for SVM 

training and classification. These 60 features 

include all the 63 features except the 3 features with 

feature indices of 58, 61, 62 according to Table A in 

Section 3.1.

2.3 Cerebral edema segmentation

Cerebral edema is segmented in the following 

steps from CT images of patients with ICH. Firstly, 

preprocessing is carried out to derive the brain
[18]

.

Then the hematoma is segmented based on local 

adaptive thresholds and case-based reasoning
[20]

.

Thirdly, 60 features are calculated for brain 

voxels from axial slices with hematoma (z z0)

or neighboring an axial slice with hematoma (z

z0 1 and z z0 1), which are fed into the derived 

classification model from Section 2.2.3 to be 

classified as foreground or background (Fig. 4(b)). 

Fourthly, foreground regions with hematoma voxels 

are taken as lesion regions. As is known, a common 

within the foreground region to be filled. The last 

step is thus to fill the holes within lesion regions, 

subtract the hematoma voxels and take the rest as 

edema (Fig. 4(d)).

On an axial slice without hemorrhage but 

neighboring an axial slice with hemorrhage, if there are 

foreground regions from the classifier which overlap 

with lesion regions (having voxels with the same 

x and y coordinates) in the neighboring axial slice, 

these foreground regions are also taken as edema.

the lesion

                                         (a)                                              (b)                                                (c)                                              (d)
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3 Results

The algorithm was implemented in Matlab version 

2013a running on Microsoft windows with Core i5 

3.2 GHz processor and 8 GB memory. The voxel-

wise classification was applied to brain voxels 

with or neighboring hematoma. The average time 

consumption for one data was 11.83 minutes: 0.43 

minutes in preprocessing, 9.47 minutes in feature 

calculation (mainly on calculation of the texture 

features), 1.62 minutes in SVM prediction, and 0.31 

minutes in post processing.

To quantify the edema segmentation, the following 

measures are employed
[28]

:  Dice coefficient, 

For comparison, two kinds of classifier are 

devised with the ground truth edema from MRI data 

and CT-GT classifier, respectively (GT for ground 

using all 14 scans with both MRI and CT, while the 

CT-GT classifiers are designed using 36 CT scans 

from those patients without T2-weighted scans via 

leave-one-out cross validation. The classifiers can 

also vary in terms of number of classes: 2 classes 

and 3 classes. In the case of 2-classes classifiers, 

hematoma and edema are taken as the foreground 

while the remaining brain voxels are taken as the 

background. For 3-classes classifiers, hematoma, 

edema and remaining brain voxels are respectively 

taken as different classes. The proposed method is 

the MRI-GT classifier with 2 classes. To enable a 

fair comparison, the same procedure to eliminate 

the false foreground, fill holes within lesions and 

include pure edema regions without hematoma is 

The proposed method is also compared with 

the method to segment edema based on region 

growing
[12]

, semi-automated level set method
[8]

 and 

threshold based method
[9]

.

3.1 Feature selection results

To devise a feature vector from the CS measure for 

36 testing data, 4 patients (with ID 91833, 92035, 

92142, and 92339) are chosen randomly for analysis. 

The experimental results for the feature selection of 

the 4 data can be found in Appendix.

Table 3 summarizes the dependency of the 

maximum classification accuracy and maximum 

in terms of the CS measure. It can be seen that the 
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proposed MRI-GT classifier with 2-classes yields 

the maximum classification accuracy and Dice 

all reaches maximum at 60 features, eventually 60 

features arranged in the descending order of the CS 

measure are chosen as the optimized features to form 

the feature vector. As the 3-classes classifiers yield 

for brevity without confusion.

3.2 Different sampling strategies

A special training sample generation is employed 

as described in Section 2.2.2 in light of the 

postulation that brain voxels close to the edema 

are more relevant and difficult to be classified. 

To justify, two classifiers are designed: one using 

uniform sampling of negative samples to yield a 

P 0.009), and the other using the combination of 

dilated voxels (1.5 times the original foreground 

size) and uniform sampling of the rest of the brain 

voxels (0.7 times the original foreground size) as 

the negative samples to yield a significantly lower 

P 0.023) for the 4 

patient data. We also carry out experiments to see 

the accuracy dependency on the size of the negative 

samples using the 4 patient data with background 

size being from 1 to 1.8 times the original lesion size 

and a step 0.1. It is found that the proposed method 

lesion size.

Due to the higher Dice coefficient, the special 

sampling strategy detailed in Section 2.2.2 is adopted 

for all the experiments.

3.3 Performance evaluation

From Table A in the Appendix, it can be found that 

MRI-GT and CT-GT classifiers yield maximum 

classification accuracy and Dice coefficient with 

feature dimension of 60 and 33, respectively. Thus, 

we employ the MRI-GT/CT-GT classifiers with 

feature dimension of 60/33 on all 36 testing data for 

Two axial slices with acute and subacute ICH are 

shown respectively in Fig. 5 and 6, where the lesions 

delineated by experts are shown within the green 

contours while the lesions segmented by different 

methods are shown within the red contours. The 

region-growing method[12]
, semi-automated level set 

method
[8]

, and threshold based method
[9]

 for Fig. 5 

are respectively 0.947/0.869, 0.805, 0.819 and 0.736; 

0.931/0.868, 0.904, 0.897 and 0.900.

Table 4 summarizes the classification accuracy, 

Dice coefficient, sensitivity, and specificity of the 

proposed method.

  existing methods

Performances of the classifiers, region growing 

method
[12]

, semi-automated level set method
[8]

, and 

threshold based method
[9]

, are tested against the 36 

testing data (Table 5). Note that the quantitative 

measures of the proposed method are shown in bold. 

Student’s paired t-tests have been carried out to 

find that the proposed method yields significantly 

higher Dice coefficient than the CT-GT classifier, 

region growing method
[12]

, semi-automated level 

set method
[8]

, and  threshold based method
[9]

 (all 

P 0.000 1). As for sensitivity, the proposed 
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method
[12] [8]

 [12] [8]

                                               (a)                                        (b)                                            (c)                                        (d) 

                                                  (a)                                       (b)                                         (c)                                       (d)

                                                                       (e)                                         (f)                                          (g)

                                                                        (e)                                        (f)                                         (g)
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method performs significantly better than the CT-

P 0.000 1) and the semi-automated 

level set method
[8]

 (P

difference between the proposed method and the 

region growing method
[12]

 (P 0.096) as well as 

the threshold based method
[9]

 (P 0.247). For the 

specificity, the proposed method is significantly 

better than the CT-GT classifier (P 0.003) and 

the region growing method (P 0.001); there is no 

significant difference between the proposed method 

and the semi-automated level set method
[8]

 (P 0.228) 

as well as the threshold based method
[9]

 (P 0.392).

The main characteristics of the study are: to learn 

the classification model from two modalities (CT 

and MRI) so that the clear boundaries of edema on 

edema on CT with unclear boundaries, to sort out the 

discriminative features based on the CS measure so 

that the combination of 60 features (the 63 features 

excluding features numbered 58, 61 and 62) are 

picked to achieve the best accuracy to differentiate 

lesion and non-lesion voxels with grayscale 

overlap on CT, and to segment the CT data with the 

classification model derived from a different group 

of patients.

A special sampling strategy to construct negative 

samples from around the positive samples is 

employed as described in Section 2.2.2 to achieve a 

classifier using homogeneous sampling of negative 

P

the combination of dilated voxels (1.5 times the 

original foreground size) and uniform sampling of 

the rest of the brain voxels (0.7 times the original 

foreground size) as the negative samples to yield a 

P

0.000 1). This additional experiment may suggest 

that negative samples around positive samples 

could yield better classification. Sampling strategy 

remains an open topic in pattern recognition and 

our sampling strategy may be employed for similar 

applications.

The proposed method yields significantly higher 

[12] [8]
 and threshold based 

method
[9]
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and specificity than the CT-GT classifier, region 

growing method
[12]

, semi-automated level set 

method
[8]

, and threshold based method
[9]

 (all P

0.000 1) (Table 5).

It is non-trival to accurately delineate edema regions 

on CT scans with unclear image boundaries between 

the edema and CSF as well as WM due to substantial 

overlap of grayscale ranges
[7]

. To illustrate the 

inter-radiologist variability among three manual 

segmentations and the ground truth edema on CT 

and MRI, Dice coefficient and Hausdorff distance 

are calculated for one typical data (Table 6 and 

Fig. 7). It can be seen that 3 experts could delineate 

the edema with high constistency on MRI due to the 

clear boundaries of edema. On the other hand, there 

exist substantial  differences among the 3 experts 

in delineating the edema boundary on CT due to 

unclear boundary, and different prior knowledge of 

radiologists employed. This uncertainty of edema 

boundaries is one major reason of the higher voxel 

The ground truth edema on MRI scans are cast onto 

the CT space for training the classifier model via 

affine transformation. Hausdorff distance and Dice 

coefficient are calculated to assess the registration 

accuracy and to quantify the diffierence between 

the manually segmented lesion boundaries on the 

CT and the MRI brain scans after registration. 

As listed in Table 7, the affine registration using 

3D Slicer software yields an average Hausdorff 

hemorrhage for the same typical data shown in 

Fig. 7. On the contrary, the Hausdorff distance and 

that hemorrhage could be well represented on 

both CT and T2-weighted images, the high Dice 

coefficient (0.989 vs. 0.839) and relative small 

Hausdorff distance (1.629 vs. 8.922) may imply that 

(a) CT scan

(b) MRI scan
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the registration is accurate to cast the desired lesion 

from MRI to CT space. 

Determination of the ground truth edema from CT 

scans for validation is a compromised choice due to 

the unavailability of ground truth edema from MRI 

mechanism why the MRI-GT classifier could yield 

Because the type of classifier and the way to 

select the features are the same, the difference in 

is due to the difference in derivation of positive 

samples during training. In other words, the positive 

samples to train the classifiers determine the upper 

limit of the accuracy, or representation capability. It 

is thus reasonable to say that the positive samples 

to train the MRI-GT classifier  (derived from the 

clear edema boundaries on MRI (Fig. 2(b)) is much 

better than the positive samples to train the CT-

GT classifier (derived from the manual drawing 

of experts using complicated prior knowledge 

(Fig. 2(e)) to represent the charateristics of those 38 

and specificity.  To realize the representation 

capability, the rich information of lesion and non-

lesion could best be encoded by 60 features of 

the MRI-GT classifier and 33 features of CT-GT 

classifier. We humbly believe that it is due to the 

better reprentation capability and the optimized 

features to implement the representation capability 

based on CS measures, the MRI-GT classifier is 

Take Fig. 2 for example, using the manually 

drawn edema on CT as quantification reference, 

the MRI-GT classifier yields a Dice coefficent of 

0.844 (Fig. 2(f)) which is higher than that of the CT-

GT classifier (Dice coefficient 0.834, Fig. 2(g)). 

Alternatively, if we take the manually drawn edema 

on MRI as the quantitative reference, the MRI-GT 

becomes even smaller (0.822).

From Table 4, it can be seen that the proposed 

method attains slightly higher Dice coefficient (P

0.321) for patients with acute ICH than that for 

patients with subacute ICH. It should be noted that at 

the subacute stage, the density of edema will increase 

while the density of hemorrhage will decrease with 

the absorption of edema and hemorrhage, resulting 

in an increased grayscale overlap between edema 

and WM as well as between hemorrhage and gray 

matter as compared with the ICH at the acute stage. 

These two factors may contribute to more edema 

misclassification for patients with subacute ICH. 

Even though that the MRI-GT classifier is trained 

from patients with acute ICH, it seems that the 

be applicable to sub-acute stage ICH data. 



26

The main contributions are threefolds.

has been built from patients with both MRI and CT 

scans. By doing so, the clear boundaries of edema 

from MRI provide implicit constraints on features 

in CT images that could differentiate voxels with 

similar grayscales into lesion and non-lesion voxels.

Secondly, a special sampling strategy has been 

employed to construct negative samples around 

the positive samples which could yield better 

classification accuracy than the uniform sampling 

of negative samples, as well as the negative samples 

derived from the combination of neighboring voxels 

and uniform sampling of the rest of brain voxels.

Thirdly, the CS measure is employed to find the 

accuracy. 

The proposed method could include non-edema 

voxels when they are neighboring edema and have 

similar grayscales to those of hematoma (arrow, 

Fig. 6(c)) and edema (arrow, Fig. 5(c)). On the other 

hand, the CT-GT classifier has a worse capability 

to differentiate edema from WM and CSF, in the 

form of including more CSF and WM as edema 

(Figs. 5 and 6). These observations are true for 

all the tested data. We may thus conclude that the 

added information from T2-weighted images for 

segmenting edema from CT images is to enhance 

the capability to differentiate edema from its 

neighboring WM and CSF. 

The proposed method will have large error when 

there are large neighboring non-edema regions 

with grayscales similar to those of edema (Fig. 8). 

For these cases, even experts may have difficulty 

differentiating edema from the rest. This problem is 

inherent to the inferior capability of CT in depicting 

edema. Possible solutions may be: imaging ICH 

with MRI, recruiting more subjects who have both 

CT and MRI scans to learn a more versatile model, 

and confining the range of edema around ICH (for 

instance, with few exceptions, one could assume that 

the edema will be within 1 centimeter of the ICH 

boundaries).

The proposed method is a straightforward way 

to incorporate the additional information from MRI 

into CT space for better delineating the ground truth 

Fig. 8 A case ha ing scattered W ith similar grayscales to that of edema that is dif cult for both the human being and

the algorithm to delineate (a) an original a ial CT slice (b) ground truth lesion ithin the green contour (c) segmentation

of the ro osed method (Dice 0.781) and (d) segmentation of the CT-GT classi er (Dice 0.7 ) here the segmenetd

lesion is the region ithin red contour

                                             (a)                                              (b)                                              (c)                                             (d) 
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we will explore an alternative way through transfer 

learning.

The proposed method adopts a traditional 

way for feature selection: extracting the possible 

relevant features followed by feature selection 

based on common subspace measure to pick out the 

discriminative features. In the future, we will explore 

an alternative way to pick out discriminative features 

through representation learning. 

5 Conclusion

In conclusion, we have proposed a method to 

segment edema from CT images of ICH patients by 

plus hematoma) from 14 ICH patients with both 

CT and T2-weighted images, constructing negative 

samples around the positive samples, and optimizing 

features based on the CS measure. Validation on 

36 clinical CT scans for patients with ICH shows 

that the proposed method could yield a mean Dice 

than that of the classifier trained with CT ground 

P 0.000 1), region 

growing method
[12]

P 0.000 1), 

semi-automated level set method
[8]

P 0.000 1),  and threshold based method
[9]

P 0.000 1). The proposed method 

could provide a potential tool to quantify edema, 

evaluate the severity of pathological changes, and 

guide therapy of patients with ICH.

The authors would like to thank Dr. Xin Liu from 

Shenzhen Institutes of Advanced Technology for 
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edema, 3 radiologists (Drs Guijin Du, Baotao Lv, 

and Qifei Xu) from Linyi People’s Hospital for their 
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Appendix

The sorted lists of feature indices of 2-classes from the 

MRI-GT and CT-GT classifiers using CS measures 

trained using 2 features to 63 features according to 


