一种基于近似点光源模型的光度立体视觉系统标定方法

聂 颖 ${ }^{12}$ 宋 展 ${ }^{1}$ 焦国华 ${ }^{1}$
${ }^{1}$（中国科学院深圳先进技术研究院 深圳 518055）
${ }^{2}$（中国科学院大学深圳先进技术学院 深圳 518055）

Abstract

摘 要 文章研究了一种由近似点光源组成的光度立体视觉系统的标定方法。由于光源自身的非均匀发光特性，传统的平行光和点光源模型不再适用，为实现精确的三维法向重建，必须对光源及光照场进行精确的标定。论文首先根据光源自身的发光特性建立其辐射度模型，进而提出了一种两步标定策略，对光源位置参数及主光轴参数进行标定。以相机作为参照系，提出了一种多球标定方法，用于计算各个光源的位置参数，该方法利用相机观察到的多个球面高光点图像坐标，结合球体轮廓线及球体半径实现了光源位置的精确计算。为实现光源主光轴参数的估算，提出了一种基于参考平面的标定方法，通过分析近似点光源照射下的平面亮度分布，结合等亮度线拟合策略实现了光源主光轴方向参数的计算。基于系统标定参数以及光源的发光模型，就可以对每个场景点的入射光条件进行精确建模，从而实现精确的法向计算。在实验部分，分别对标准几何物体和自由曲面物体进行三维重建实验，并与传统的平行光及点光源模型进行了对比。结果显示，所提出的标定方法能够在非均匀光照条件下获得精确的三维法向重建结果。

关键词 光度立体视觉；三维重建；点光源；光照模型；系统标定

A Novel Calibration Method for the Photometric Stereo System with Quasi－Point Light Sources

NIE Ying ${ }^{1,2}$ SONG Zhan ${ }^{1}$ JIAO Guohua ${ }^{1}$
${ }^{1}$（ Shenzhen Institutes of Advanced Technology，Chinese Academy of Sciences，Shenzhen 518055，China ）
${ }^{2}$（ Shenzhen College of Advanced Technology，University of Chinese Academy of Sciences，Shenzhen 518055，China ）

Abstract

In this paper，a new calibration method for a specially designed photometric stereo system was presented．Different from conventional photometric stereo systems which adopt parallel or distant point light sources，the quasi－point light sources are used in the proposed system，which permits the system with compact size and short working distance．Subject to the non－isotropic radiance property of the quasi－point

[^0]
Abstract

light source，the lighting field should be precisely calibrated so as to determine the intensity and direction for each incident light ray．The proposed calibration method was performed in two steps．The first step was to calculate light source position，where a multi－sphere－based method was introduced．By extracting the highlight image points formed from the light source on the specular sphere，and utilizing the sphere contour and radius， it shows that the light source coordinate under camera reference frame can be precisely estimated．In second step，a reference plane－based method was proposed to calculate the principle optical axis of light source．It proves that，the principle optical axis should cross the brightness point in the image of reference plane，and the brightness point can be estimated by fitting the iso－luminance curve in the image．With the calibration parameters，and considering the radiance model of light source，lighting condition for each scene point can be determined．The experiments were conducted with various target surfaces and compared with conventional light models to demonstrate feasibility and accuracy improvement by the proposed calibration method．

Keywords photometric stereo；3D reconstruction；point light source；light model；system calibration

1 引 言

光度立体视觉是计算机视觉领域的一个重要研究方向，它的基本原理是通过分析物体在不同光源照射下的表面亮度变化来计算物体表面法向，进而利用法向积分策略获取表面三维模型 ${ }^{[1]}$ 。相较于主流的三维重建技术，如结构光和双目视觉，光度立体视觉需要更多光源，但它不需要专业的光学投影设备，如投影机和激光器等。而且，光度学三维重建对表面细节的恢复能力很高，因为其重建结果的分辨率取决于相机的分辨率，而传统的结构光和激光三维扫描技术的分辨率往往受制于投影设备的分辨率。一个典型的光度立体视觉系统通常包含一个相机和若干光源，由于光度学重建技术依赖于表面入射光，因此要实现高精度的三维重建，光源自身的影响因素是不可忽略的。

为了简化表面法向的计算过程，现有的大多数光度立体视觉系统通常假设表面入射光为平行光 ${ }^{[2-6]}$ ，在这种假设条件下，物体表面每个点的入射光强度和方向被假设为一致的。为满足平行光假设条件，实际应用中通常采用大面积阵列光源或者高强度远距离点光源 ${ }^{[7,8]}$ ，以使得目标物

体表面各点的入射光大致均匀。然而这些特殊设计的光源设备往往存在体积大，工作距离远以及成本高的缺点。要实现低成本的光度立体视觉系统，单个发光二极管（LED）光源无疑是最佳的选择。但是根据 LED 自身的发光原理，单个 LED是很难获得类似平行光的光照条件的。在本文中，我们将这类生活中常见的非均匀点光源称为近似点光源。与平行光源和理想点光源不同，近似点光源在各方向上的发光强度不同，光场中各点的光照强度不仅与该点到光源的距离有关，还与该入射光线与光源主光轴的角度有关。在这种非均匀光照条件下对物体表面进行光度学三维重建，重建结果总会出现较大的扭曲和变形。

为研究近场近似点光源条件下的高精度三维重建问题，我们首先搭建了一套简单的光度立体视觉系统，如图 1 所示，该实验装置包括一个相机和若干红外 LED 点光源。由于 LED 发光的非均匀性，该光源近场中的照明条件不能用平行光或理想点光源模型来描述。这种光照条件下，要较好地估计物体的表面法向，需要对物体表面点的光照条件进行精确描述。因此，为了保证重建结果的高精度，我们必须对光源的发光特性进行建模，并提出具有针对性的近似点光源标定方案。

图1 光度立体视觉硬件系统
Fig． 1 The setup of photometric stereo system
系统参数标定是大多数光度立体视觉系统的首要步骤，其主要目的是确定光源的内外部参数。针对各类光源的标定，已有大量文献对其进行介绍：人们通常将一些外形和空间位置已知的几何物体，用于辅助计算场景中的入射光方向。对于面光源和远距离点光源的标定 ${ }^{[9-11]}$ ，Powell等 ${ }^{[9]}$ 提出了使用三个反射球对光源方向进行标定的方法，其中一个漫反射球被用于标定图像系统参数，而另外两个镜面球会在图像中生成两个高光点；利用入射角和反射角相等的属性，可以确定两个高亮点的位置和光源的位置。Rykowskit等 ${ }^{[10]}$ 则提出一种基于空心球体的光源参数标定方法，光源位置可由从一个空心球体内侧反射到外侧的两条不同光线的几何关系来计算求得，在标定过程中，通过引入外极线约束以提高标定精度。而 Wu 等 ${ }^{[11]}$ 则使用多个放置在不同位置的镜面球体，并用相机拍摄在光源照射下的球体图像；通过计算高光点入射光线的交叉点来计算光源的位置。

与远距离点光源不同，在近距离点光源照射下各场景点的入射光不同，因此近距离点光源的标定也是一个重要的研究方向。在这些方法中，有的借助一些特殊形状的探测器进行光源标定，如反光球体 ${ }^{[12-14]}$ 和特殊设计的平面 ${ }^{[15]}$ ；有的则

通过分析标定物表面的阴影来标定光源 ${ }^{[16]}$ ，如 Ackermann 等 ${ }^{[17]}$ 提出一种对球面反射亮度进行精确建模的方法。而 Takai 等 ${ }^{[18]}$ 使用 $1 \sim 2$ 个平面来估计光照方向和光源位置，通过提取镜面中的高亮点以及计算它们之间的三角关系，来确定光源的三维坐标及其照射方向。而 Park 等 ${ }^{[19]}$ 则介绍了一种使用平面对近距离点光源进行标定的方法。

与传统光源不同，近似点光源的发光强度随光线方向的变化而变化。要标定一个光度立体视觉系统的非标准点光源，主要困难来自以下几个方面：（1）在近似点光源近光场中，每一点的照明条件都各不相同；（2）需要对常见 LED 的发光特性进行建模；（3）需根据发光模型，提出针对性的光源标定方案。最重要的是，标定结果必须准确，因为在非均匀光照环境下，很小的误差也会造成各点照明情况的错误估计。为了解决上述问题，本文首先介绍了一种通用的基于多球的，估计光源位置的标定方法；然后介绍了近似点光源的发光模型，以及一种针对该模型的基于参考平面的光源主光轴标定方法。结合所介绍的发光模型和标定所得的参数，可对近似点光源光场中的各点光照条件进行精确建模。

本文结构如下，第二节介绍了我们所采用的基于多个参考球的光源坐标计算方法；第三节则对近似点光源的发光特性进行抽象建模，并提出了一种基于参考平面的主光轴标定方法；第四节展示了相应的标定实验结果以及与传统发光模型的结果对比；第五节对本文进行总结，并介绍基于本文的后续工作。

2 基于反射球体的光源位置计算方法

本节提出一种基于多个反射球体的光源位置标定方法。本方法使用两个以上的已知半径为 r的镜面球体对光源进行标定，如图2（a）所示。

具体而言，我们使用相机拍摄在近似点光源照射下的标定球图像，并利用每个球的轮廓和球面高光点位置来计算光源位置。在获取标定球的图像后，可以利用 Canny 边缘检测算子 ${ }^{[20]}$ 检测出每个球的轮廓，并使用阈值法获取到每个球上的高光点位置，如图 $2(b)$ 所示。下文将详细介绍如何通过球体轮廓线和高光点进行光源位置的计算。

（a）在单一光源照射下的球体图像

（b）提取出的高光点和球面轮廓

图2 多个球体被用于计算光源坐标
Fig． 2 Multiple specular spheres are used to calculate the

light source position

2.1 球心坐标的计算

首先，利用传统相机标定方法 ${ }^{[21]}$ ，可标定出诸如焦距 f ，光心 $O_{c}\left(u_{0}, v_{0}\right)$ 和镜头畸变等相机内部参数。我们约定相机坐标系作为世界坐标系，

且世界坐标系原点表示为 $O(0,0,0)$ 。根据针孔模型，对于任何图像点 $P(u, v)$ ，其对应的世界坐标 $P(x, y, z)$ 都可以用一个比例因子 k 简单地表示为 $(x, y, z)=k(u, v, f)$ 。当提取出标定球的轮廓线图像坐标 $Q_{c}\left(Q_{u}, Q_{v}, f\right)$ 和高光点图像坐标 $P_{c}\left(P_{u}\right.$ ， $\left.P_{v}, f\right)$ 后，每个球的球心坐标 $S\left(S_{x}, S_{y}, S_{z}\right)$ 可以利用以下性质进行估计：
（1）所有通过相机光心 O 和轮廓点 Q 的光线都是球的切线；
（2）球心到所有切线的距离都是半径 R 。
以上两条性质表明：对于某一标定求它的所有切线 $O Q$ 和 $O S$ 的夹角 β 都相等，如图 3 所示。将 $O Q$ 和 $O S$ 的单位向量分别表示为：

$$
\begin{equation*}
\boldsymbol{v}_{Q}=\left[x_{Q}, y_{Q}, z_{Q}\right]^{\mathrm{T}}, \quad \boldsymbol{v}_{S}=\left[x_{S}, y_{S}, z_{S}\right]^{\mathrm{T}} \tag{1}
\end{equation*}
$$

那么，单位向量 \boldsymbol{v}_{Q} 与 \boldsymbol{v}_{S} 的夹角 β 可以表示为：

$$
\begin{equation*}
\cos \beta=\left[x_{Q}, y_{Q}, z_{Q}\right] \cdot\left[x_{S}, y_{S}, z_{S}\right]^{\mathrm{T}} \tag{2}
\end{equation*}
$$

将公式（2）应用于所有轮廓点 $Q^{i}(i=1,2, \cdots, M)$ ，其中 M 表示轮廓线点的个数，可以得到 Q^{i} 对应的余弦值：

$$
\begin{equation*}
\cos \beta^{i}=\left[x_{Q^{i}}, y_{Q^{i}}, z_{Q^{i}}\right] \cdot\left[x_{S}, y_{S}, z_{S}\right]^{\mathrm{T}} \tag{3}
\end{equation*}
$$

图 3 球面轮廓，高光点位置与光源坐标的几何关系图
Fig． 3 Geometrical relations between highlight point，sphere contour points and the light source

这 M 个余弦值的平均值可表示为：

$$
\begin{equation*}
\overline{\cos \beta}=\frac{1}{M}\left[\sum x_{Q^{i}}, \sum y_{Q^{i}}, \sum z_{Q^{i}}\right] \cdot\left[x_{S}, y_{S}, z_{S}\right]^{\mathrm{T}} \tag{4}
\end{equation*}
$$

对任意轮廓点 Q^{i} ，它对应的 $\cos \beta^{i}$ 应该近似等于 $\overline{\cos \beta}$ ，于是根据公式（3）和（4），有以下关系式：
$\left[\left(x_{Q^{i}}, y_{Q^{i}}, z_{Q^{i}}\right)-\frac{1}{M}\left(\sum x_{Q^{i}}, \sum y_{Q^{i}}, \sum z_{Q^{i}}\right)\right] \cdot\left[\begin{array}{l}x_{S} \\ y_{S} \\ z_{S}\end{array}\right]=0$（5）
令 $\boldsymbol{A}^{i}=\left(x_{Q^{i}}, y_{Q^{i}}, z_{Q^{i}}\right)-1 / M\left(\sum x_{Q^{i}}, \sum y_{Q^{i}}, \sum z_{Q^{i}}\right), \boldsymbol{A}^{i}$为 1×3 的常量矩阵。并且将公式（5）应用于所有点 Q^{i} ，可以得到一个奇异方程：

$$
\begin{equation*}
A \boldsymbol{X}=\boldsymbol{O} \tag{6}
\end{equation*}
$$

其中， \boldsymbol{X} 表示向量 $\boldsymbol{v}_{S}=\left[x_{S}, y_{S}, z_{S}\right]^{\mathrm{T}}$ ；系数矩阵 $\boldsymbol{A}=\left[A^{1}, A^{2}, \cdots, A^{i}, \cdots, A^{m}\right]^{\mathrm{T}}, \boldsymbol{A}$ 为 $M \times 3$ 的常量矩阵。利用 SVD（Singular Value Decomposition）特征值分解对公式（6）进行求解，求得的结果则是从光心指向球心的单位向量 \boldsymbol{v}_{S} ，进而可以根据公式（2）求得角度 β 。

于是根据性质（2），在已知每个球半径的情况下，球心坐标满足以下关系式：

$$
\begin{equation*}
\left(S_{x}, S_{y}, S_{z}\right)=\frac{r}{\sin \beta} \cdot\left(x_{S}, y_{S}, z_{S}\right) \tag{7}
\end{equation*}
$$

又因为每个高光点 $P_{H}\left(P_{x}, P_{y}, P_{z}\right)$ 都是球面上的点，显然可以得到：

$$
\begin{equation*}
r^{2}=\left(S_{x}-P_{x}\right)^{2}+\left(S_{y}-P_{y}\right)^{2}+\left(S_{z}-P_{z}\right)^{2} \tag{8}
\end{equation*}
$$

将透视关系

$$
\begin{equation*}
\left(P_{x}, P_{y}, P_{z}\right)=k \cdot\left(P_{u}, P_{v}, f\right) \tag{9}
\end{equation*}
$$

代入公式（8），可求得高光点坐标 $P_{H}\left(P_{x}, P_{y}, P_{z}\right)$ 。值得注意的是，我们可能求得两个满足条件的球面点，显然距离光心更近的一个点才是正确解。
至此，我们已求得了球心坐标 $S\left(S_{x}, S_{y}, S_{z}\right)$ 和高光点坐标 $P_{H}\left(P_{x}, P_{y}, P_{z}\right)$ 。

2.2 光源空间坐标参数的计算

根据镜面反射原理，高光点处的入射光线和反射光线是关于法向 $\boldsymbol{S P}_{H}$ 旋转对称的。具体

而言，向量可以由向量 $\boldsymbol{L} \boldsymbol{P}_{H}$ 绕 $\boldsymbol{S} \boldsymbol{P}_{H}$ 旋转 180° 得到。利用罗德里格斯算子 ${ }^{[22]}$ ，向量 $\boldsymbol{L} \boldsymbol{P}_{H}$ 可以表示为：

$$
\begin{equation*}
\boldsymbol{L} \boldsymbol{P}_{H}\left(a_{1}, a_{2}, a_{3}\right)=\text { Rodrigues }\left(\frac{\boldsymbol{S} \boldsymbol{P}_{H}}{\left|S P_{H}\right|} \times \pi\right) \cdot \boldsymbol{O P _ { H }} \tag{10}
\end{equation*}
$$

那么光线 $\boldsymbol{L} \boldsymbol{P}_{H}$ 过点 $P_{H}\left(P_{x}, P_{y}, P_{z}\right)$ 且方向向量为 $\boldsymbol{L} \boldsymbol{P}_{H}\left(a_{1}, a_{2}, a_{3}\right)$ ，所以光线 $\boldsymbol{L} \boldsymbol{P}_{H}$ 可被表示为点斜式：

$$
\begin{equation*}
\frac{\left(x-P_{x}\right)}{a_{1}}=\frac{\left(y-P_{y}\right)}{a_{2}}=\frac{\left(z-P_{z}\right)}{a_{3}} \tag{11}
\end{equation*}
$$

又因为直线可以表示为两个相交平面的交线，因此以上点斜式也可以被表示为：

$$
\left.\begin{array}{l}
a_{2} x-a_{1} y+0 z=a_{2} P_{x}-a_{1} P_{y}+0 P_{z} \tag{12}\\
a_{3} x-0 y-a_{1} z=a_{3} P_{x}-0 P_{y}-a_{1} P_{z}
\end{array}\right\}
$$

当图像里有 m 个小球，我们便可以得到 m 个高光点，继而可以得到 m 条入射光线 $L P_{H}{ }^{i}(i=1,2, \cdots$ ， m ）。而对每条光线 $L P_{H}{ }^{i}$ ，公式（12）也表示为矩阵形式 $\boldsymbol{A}^{i} X=\boldsymbol{b}^{i}$ ，其中

$$
\boldsymbol{A}^{i}=\left[\begin{array}{ccr}
a_{2}{ }^{i} & -a_{1}{ }^{i} & 0 \tag{13}\\
a_{3}{ }^{i} & 0 & -a_{1}{ }^{i}
\end{array}\right] ; \boldsymbol{b}^{i}=\left[\begin{array}{l}
a_{2}^{i} P_{x}^{i}-a_{1} P_{y}^{i} \\
a_{3}^{i} P_{x}^{i}-a_{1} P_{z}^{i}
\end{array}\right]
$$

理想情况下，光源点 $L\left(L_{x}, L_{y}, L_{z}\right)$ 是这 m 条入射光线的交点，那么光源坐标 $L\left(L_{x}, L_{y}, L_{z}\right)$ 满足以下等式：

$$
\begin{equation*}
\boldsymbol{A} X=\boldsymbol{b} \tag{14}
\end{equation*}
$$

其中，X 表示需求解的光源坐标；系数矩阵 $\boldsymbol{A}=$ $\left[A^{1}, A^{2}, \cdots, A^{i}, \cdots, A^{n}\right]^{\mathrm{T}} ; \boldsymbol{b}=\left[b^{1}, b^{2}, \cdots, b^{i}, \cdots, b^{n}\right]^{\mathrm{T}}$ ，利用最小二乘法可以求得光源坐标近似解。

综上，为了计算光源的空间坐标，我们首先提取标定球的图像轮廓和高光点；然后利用轮廓和高光点的图像坐标估计出球心和高光点的空间坐标；最后基于镜面反射原理，总结出光源，相机和高光点的几何关系，以求解点光源的坐标。值得注意的是，本文所提出的光源位置标定法是一个对点光源具有通适性的标定方法；不论该点光源的发光均匀与否，以上方法均可有效实现光

源位置的计算。

3 基于参考平面的光源主光轴计算方法

为了准确描述近似点光源的光照场，本节首先对光源的发光特性进行建模，并提出一个近似点光源可由三个参数表示，包括光源的主光轴 \boldsymbol{I}_{0}和沿主光轴方向的发光强度 E_{0} ，以及发光强度的角度衰减函数 F 。其中，角度衰减表示发光强度随发光方向 \boldsymbol{l} 与主光轴 \boldsymbol{I}_{0} 的夹角 θ 的增加而减少。而后利用近似点光源照射下的平面亮度分布的轴对称属性，来求解光源的主光轴。

3.1 近似点光源的光照模型

事实上，一个典型的近似点光源的角度衰减通常符合 g－cosine 定律，即 $F=\cos ^{g} \theta$ 。因此，近似点光源的发光模型可表示为如下关系式：

$$
\begin{equation*}
E_{\theta}=E_{0} \cos ^{g} \theta \tag{15}
\end{equation*}
$$

其中，θ 表示光强与主光轴 \boldsymbol{l}_{0} 与光线方向 \boldsymbol{l} 的夹角；g 则是光源的一个内部参数。LED 是一种典型的近似点光源，它的内参 g 可利用产品参数 $\theta_{\text {half }}$ 求得，表示为 $g=\ln (0.5) / \ln \left[\cos \left(\theta_{\text {half }}\right)\right]$ 。

而要对近似点光源的光照场进行建模，我们还必须考虑光照强度的距离衰减。平方反比律是一种典型的距离衰减，可表示为

$$
\begin{equation*}
E=E_{\theta} / d^{2} \tag{16}
\end{equation*}
$$

其中 d 表示光源到点 P 的距离。因此，结合光强角度衰减式（15）和距离衰减式（16），光照场中的光照强度分布可以表示为

$$
\begin{equation*}
E=E_{0} \cdot \cos ^{g} \theta / d^{2} \tag{17}
\end{equation*}
$$

公式（17）即为近似点光源的光照模型，本文已将其写作 QPLM（Quasi Point Lighting Model）。假设物体表面 Π 是朗伯表面，那么物体表面的亮度可以表示为：

$$
\begin{equation*}
I_{P}=E \cdot \boldsymbol{n}^{\mathrm{T}} \boldsymbol{l} \tag{18}
\end{equation*}
$$

其中，E 是 P 点的光照强度； \boldsymbol{n} 是物体表面法向； \boldsymbol{l} 是入射光方向。将等式（18）转换为角度表

达式，物体的表面亮度可表示为：

$$
\begin{equation*}
I_{\theta, \gamma}=E_{0} \frac{\cos ^{g} \theta \cdot \cos \gamma}{d^{2}} \tag{19}
\end{equation*}
$$

其中，γ 为表面法向 \boldsymbol{n} 和光线 \boldsymbol{l} 的夹角。

3.2 证明平面上有且仅有一个最亮点

显然，近似点光源是一种旋转对称光源。根据 Park 等 ${ }^{[19]}$ 研究可知，当一个平面被某一旋转对称的点光源照射时，平面上的亮度成轴对称分布。基于这一属性，我们提出了一种基于参考平面的主光轴计算方法。实际上，当一个平面被某一近似点光源照射时，该平面不仅具有亮度轴对称属性，而且在该平面上有且仅有一个最亮的点。

如图4所示，参考平面 Π 被近似点光源 L照射，其中 X 是点 L 在 Π 上的投影，C 是主光轴与平面交点。那么直线 $X C$ 则是平面亮度的对称轴。令 h 表示 $|L X|$ ，那么光源 L 到平面任意一点 P 的距离 d 可以表示为：

$$
\begin{equation*}
d=h / \cos \gamma \tag{20}
\end{equation*}
$$

结合式（19）和（20），平面 Π 上的亮度分布可以表示为：

$$
\begin{equation*}
I=E_{0} \cdot \frac{\cos ^{g} \theta \cdot \cos ^{3} \gamma}{h^{2}} \tag{21}
\end{equation*}
$$

同时对等式（21）的两边取对数 $\Phi(\theta, \gamma)=\ln (I)$ ，可以得到以下等式：

$$
\begin{gather*}
\Phi(\theta, \gamma)= \\
g \ln \cos \theta+(1+\sigma) \ln \cos \gamma-\sigma \ln h+\ln E_{0} \tag{22}
\end{gather*}
$$

由于取对数操作不影响函数的单调性，显然取对数操作也不影响变换后的函数的单调性，因此变换后的函数 $\Phi(\theta, \gamma)$ 与原分布 I 的单调性是一致的。从图4可知，对于平面上对称轴的每一条直线，最亮点都是该直线与对称轴 $X C$ 的交点。具体来说，当点 P 从交点沿垂线上的点远离 $X C$时，θ 和 γ 都会增加直到 $\pi / 2$ 。又由于 $\Phi(\theta, \gamma)$ 是关于 θ 和 γ 单调递减函数，所以 $\Phi(\theta, \gamma)$ 便会沿垂轴递减。因此我们可以得到如下结论：
（1）对称轴 $X C$ 与其垂线的交点是垂线上的最亮点；
（2）对称轴 $X C$ 上的最亮点是整个平面上的唯一最亮点。

图4 近似点光源照射下的平面亮度分布具有对称性
Fig． 4 Under the quasi－point light source illumination，
irradiance distribution on a reference plane can be assumed

axisymmetric

为了证明对称轴上只有一个最亮点，首先证明对称轴上存在极值点。如图5所示，由于 $\cos \theta$和 $\cos \gamma$ 是偶函数，那么存在属性 $\cos \theta=\cos (-\theta)$和 $\cos \gamma=\cos (-\gamma)$ 。因此，改变角度 θ 和 γ 的符号不会影响反射光强函数的分布。我们约定 $\overrightarrow{X C}$为对称轴的正向，如果 P 位于点 C 或 X 的正向时，我们可以将与 P 对应的角度 θ 和 γ 为正，相反则为负。例如，如果 P 位于线段 $|X C|$ 上，那么有 $\theta<0$ 和 $\gamma>0$ 。所以，对对称轴 $X C$ 上的每个点 P ，存在以下关系式

$$
\begin{equation*}
\theta=\gamma-\alpha \tag{23}
\end{equation*}
$$

其中 α 为主光轴 \boldsymbol{l}_{0} 与平面法向 \boldsymbol{n} 的夹角。
根据公式（22）和（23），二元方程 $\Phi(\theta, \gamma)$ 则可退化为关于 γ 的一元函数：

$$
\begin{equation*}
\Phi(\gamma)=g \ln \cos (\gamma-\alpha)+3 \ln \cos \gamma-2 \ln h+\ln E_{0} \tag{24}
\end{equation*}
$$

由于 $\boldsymbol{\Phi}(\gamma)$ 的单调性由导函数 Φ_{γ}^{\prime} 决定，对函数 $\Phi(\gamma)$ 求一阶偏导函数得：
$\Phi_{\gamma}^{\prime}=(-g) \tan (\gamma-\alpha)-3 \tan \gamma, \quad \gamma \in(-\pi / 2, \pi / 2)(25)$那么当 $\Phi_{\gamma}^{\prime}=0$ 时，$\Phi(\gamma)$ 达到极值。此时存在

关系：

$$
\begin{equation*}
\cos \theta=\cos (-\theta)-g \tan (\gamma-\alpha)-3 \tan \gamma=0 \tag{26}
\end{equation*}
$$

令 γ_{0} 表示极值处对应的 γ 值，可得到以下关系式：

$$
\begin{equation*}
\alpha=\gamma_{0}+\arctan \left(3 \tan \gamma_{0} / g\right) \tag{27}
\end{equation*}
$$

此外，$\Phi(\gamma)$ 的二阶偏导函数可以表示为：

$$
\begin{gather*}
\Phi_{\gamma}^{\prime \prime}=-\left[\frac{g}{\cos ^{2}(\gamma-\alpha)}+\frac{3}{\cos ^{2} \gamma}\right], \tag{28}\\
\gamma \in(-\pi / 2, \pi / 2)
\end{gather*}
$$

可以发现 $\Phi_{\gamma}^{\prime \prime}$ 总是负值，这保证了一阶导函数 Φ_{γ}^{\prime}是单调递减函数。因此我们可以得出以下结论：当 $\gamma<\gamma_{0}$ 时，$\Phi(\gamma)$ 单调递增；当 $\gamma>\gamma_{0}, \Phi(\gamma)$ 单调递减。最后，我们可以进一步总结出，对称轴上只有一个最亮点，同时它也是平面上最亮的点。

图5 平面对称轴上角度 α, θ, γ 之间的关系
Fig． 5 The relations among the angles α, θ, γ on the symmetry axis

3.3 主光轴参数的计算

根据上一节的证明可知，平面上会出现一个最亮点 $P_{B}\left(x_{B}, y_{B}, z_{B}\right)$ ，它在图像中的投影点表示为 $P_{B}\left(u_{B}, v_{B}, f\right)$ 。然而由于误差总是存在，最亮点无法直接通过图像直接获得。要获取最亮点，我们首先需要利用高斯滤波器去过滤图像噪声，选取图像中最亮的区域，并对该区域进行椭圆拟合，拟合所得的圆心便是最亮点的位置。

当最亮点在图片中的投影点 $P_{B}\left(u_{B}, v_{B}, f\right)$ 已经获得，下一步工作便是求解该投影点对应点的空间坐标 $P_{B}\left(x_{B}, y_{B}, z_{B}\right)$ 。为了计算最亮点的空间位

置，我们建议在平面上标记一些特殊点，利用这些点与图像中点的对应关系，可以求解出该平面与图像平面的单应性矩阵 $\boldsymbol{M}_{\text {homo }}$ 以及物体坐标系与相机坐标系的旋转平移变换 $M_{R T}$ ，那么最亮点的空间位置就能求得：

$$
\begin{align*}
& P_{B}\left(x_{B}, y_{B}, z_{B}\right)= \\
& M_{R T} \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot \boldsymbol{M}_{\text {homo }}^{-1} \cdot\left[u_{B}, v_{B}, 1\right]^{\mathrm{T}} \tag{29}
\end{align*}
$$

因此，最亮的光线 \boldsymbol{l}_{B} 可由以下等式得到：

$$
\begin{equation*}
\boldsymbol{L} \boldsymbol{P}_{B}\left(l_{x}, l_{y}, l_{z}\right)=\left[x_{B}-L_{x}, y_{B}-L_{y}, z_{B}-L_{z}\right]^{\mathrm{T}} \tag{30}
\end{equation*}
$$

它的单位向量可以表示为 $\boldsymbol{l}_{B}=\boldsymbol{L} \boldsymbol{P}_{B} /\left|L P_{B}\right|$ 。又因为旋转变换 M_{R} 可从 $M_{R T}$ 中获取，平面法向则可表示为：

$$
\boldsymbol{n}_{\Pi}\left(n_{x}, n_{y}, n_{z}\right)=M_{R}^{-1} \cdot\left[\begin{array}{lll}
0 & 0 & 1 \tag{31}
\end{array}\right]^{\mathrm{T}}
$$

那么最亮光线 \boldsymbol{l}_{B} 与法向 \boldsymbol{n}_{Π} 的夹角 γ_{0} 可表示为：

$$
\begin{equation*}
\cos \gamma_{0}=\boldsymbol{n}_{\Pi} \cdot \boldsymbol{l}_{B} \tag{32}
\end{equation*}
$$

结合等式（27）和（32），角度 α 可以计算得到。又如图5所示，主光轴 \boldsymbol{l}_{0} 可以通过绕向量 $\boldsymbol{n}_{\Pi} \times \boldsymbol{l}_{B}$旋转角度 α 后得到。利用罗德里格斯算子 ${ }^{[22]}$ ，可以求得：

$$
\begin{equation*}
\boldsymbol{l}_{0}=\operatorname{Rodrigues}\left(\alpha \cdot \boldsymbol{n}_{\Pi} \times \boldsymbol{l}_{B}\right) \cdot \boldsymbol{n}_{\Pi} \tag{33}
\end{equation*}
$$

4 实验结果与讨论

为了更好地研究近似点光源的光度学特性，我们搭建了如图1所示的硬件系统。该实验系统包括 6 个红外 LED 灯（OSRAM SFH4232A）和 1 个已标定的相机（Point Gray FLFL3－U3－13S2C－ CS）。这些 LED 分别固定在 1 个自由旋转的金属底座上，且均匀分布于相机周围。目标物体通常放置于距离相机约 400 mm 处。当设备工作时，这些 LED 将依次点亮，同时触发相机捕捉物体在不同 LED 照射下的物体图像。

表1展示了利用本文提出的方法对系统进行标定的结果。图6为光源位置和主光轴方向3D图。其中，绿色箭头表示相机光心和相机光轴；红色箭头表示各光源位置及其主光轴方向；蓝点表示标定球心坐标；而粉红点则表示在各光源照射下的高光点。总之，标定结果与实际情况相符。

表1 每个光源的标定结果
Table 1 Calibration results of each light source

光源	光源坐标 (mm)	主光轴方向 $($ 归一化 $)$
L_{1}	$6.37,-101.00,-38.56$	$-0.02,0.15,0.99$
$\mathrm{~L}_{2}$	$-88.12,-48.67,-40.37$	$0.09,0.08,0.99$
$\mathrm{~L}_{3}$	$-88.79,58.28,-38.33$	$0.10,-0.07,0.99$
$\mathrm{~L}_{4}$	$6.12,114.95,-35.29$	$-0.02,-0.18,0.98$
$\mathrm{~L}_{5}$	$99.75,60.30,-38.35$	$-0.19,-0.08,0.98$
$\mathrm{~L}_{6}$	$102.91,-49.16,-38.34$	$-0.17,0.10,0.98$

图6 光源位置和主光轴方向3D 图
Fig． 6 Plot of the calculated calibration sphere centers and the direction of each light source in 3D
国内外研究学者在研究光度学问题时，其主要着重点集中在反射率建模和遮挡阴影等问题，其实验系统都尽量避免采用我们这种实验设计，且不同的实验系统其光源和标定方法也各不相同，因此可比性不是很大。本工作中，我们将重点放在光源的光照场建模和参数标定方面，同时，近似点光源模型（QPLM）也是我们首先提出的一种针对近距离非标准点光源的光照场建模方法，因此可参考的国内外工作很少，因此

在实验对比部分，我们选择了两种最有代表性的光照模型进行对比，即平行光模型（Parallel Light Model，PLM）和理想点光源模型（Ideal Point Light Model，IPLM）。平行光模型在计算环境光强分布时，既不考虑角度衰减也不考虑距离衰减因子。该模式认为，所有表面点都具有相同的入射光方向和强度。而理想点光源模型则仅考虑光源的距离衰减因素。在这种模式下，表面各点的入射光强仅与该点到光源的距离 d 相关，而与夹角 θ 无关。

在实验一中，我们分别使用不同发光模型对平面物体进行三维重建，如图 7 所示。从输入图像可知表面入射光非常不均匀；从结果可以看出，在假设平行光或理想点光源模型时，重建结果都存在较大扭曲变形。而利用我们提出的发光模型以及相应的标定结果，能够得到一致的表面

图7 分别使用 PLM，IPLM 和 QPLM 对平面进行重建的结果

Fig． 7 3D reconstruction of a plane with lighting models of PLM，IPLM and QPLM

法向和更好的重建结果。实验二重建了一个圆柱体，如图 8 所示，本文提出的近似点光源模型对圆柱体的重建结果明显优于前两种模型的结果；相较于平行光模型，理想点光源模型也能获得不

图8 分别使用 PLM，IPLM 和 QPLM 对圆柱体进行重建的结果

Fig． 8 3D reconstruction results of a cylinder by the lighting
models of PLM，IPLM and QPLM

图9 使用本文方法对石膏的重建结果
Fig． 9 3D reconstruction results of a plaster by the proposed method

错的结果，这说明在点光源近场下，表面入射光方向对重建结果有较大影响。图9展示了使用本文方法对石膏像的重建结果。以上实验表明，本文提出光照模型和相应的标定方法可以准确描述近似点光源的发光特性及其照射下的物体表面亮度；在该模型假设下，不仅能重建出较好的全局形状，还能得到高精度的局部细节。

5 结 论

本文提出了一种在近似点光源近场照明条件下的光度立体系统及其光源标定方法。由于近似点光源的发光特性导致了光照场中各点的入射光不同，因此传统光照模型将不能用于描述光场中的照明情况。为了精确描述物体表面每个点的光照条件，我们使用了分两步进行的光源标定方法。在标定过程中，我们首先提出一种基于多球的光源位置计算方法，通过光源形成的高光点及球体轮廓曲线计算光源位置；并提出了一种基于参考平面的光源主光轴计算方法。其中，我们总结出一个通用的近似点光源发光模型和光照模型；另外我们还证明了近似点光源照射下，平面上存在一个与主光轴相关的最亮点，进而通过寻找最亮点实现了近似点光源的主光轴参数计算。最后，结合近似点光源的发光模型和标定所得的光源参数，可以较好地估计出场景中光照强度的分布；从而计算出高精度的表面法向，并获得了高质量的三维重建结果。

本文分别对标准物体和自由曲面两类物体进行实验验证，使用本文提出的光照模型和标定参数可以重建出接近真实值的全局形状。实验结果表明，相较于传统发光模型，本文提出的发光模型更能准确描述近似点光源的发光特性；提出的标定方案也能准确估计出各光源参数。总之，结合该发光模型以及相应的标定结果，可以得到优于传统模型的高精度重建结果。本文的后续工作

将围绕着如何优化光照场边缘处的光源参数来展开，以进一步提升该区域的三维重建效果。

参 考 文 献

［1］Woodham RJ．Photometric method for determining surface orientation from multiple images［M］／／ Shape from Shading．MIT Press，1989：513－531．
［2］Abrams A，Hawley C，Pless R．Heliometric stereo： shape from sun position［C］／／Proceedings of the 12th European Conference on Computer Vision， 2012：357－370．
［3］Schnieders D，Wong KYK，Dai ZW．Polygonal light source estimation［C］／／The 9th Asian Conference on Computer Vision，2010：96－107．
［4］Yu LF，Yeung SK，Tai YW，et al．Outdoor photo－ metric stereo［C］／／IEEE International Conference on Computational Photography，2013：1－8．
［5］Han TQ，Shen HL．Photometric stereo for general BRDFs via reflection sparsity modeling［J］．IEEE Transaction on Image Processing，2015，24（12）： 4888－4903．
［6］Zhou W，Kambhamettu C．A unified framework for scene illuminant estimation［J］．Image and Vision Computing，2008，26（3）：415－429．
［7］Zhou SK，Aggarwal G，Chellappa R，et al． Appearance characterization of linear lambertian objects，generalized photometric stereo，and illumination－invariant face recognition［J］．IEEE Transactions on Pattern Analysis and Machine Intelligence，2007，29（2）：230－245．
［8］Xie WY，Song Z，Chung RC．Real－time three－ dimensional fingerprint acquisition via a new photometric stereo means［J］．Optical Engineering， 2013，52（10）： 103103.
［9］Powell MW，Sarkar S，Goldgof D．A simple strategy for calibrating the geometry of light sources［J］． IEEE Transactions on Pattern Analysis and Machine Intelligence，2001，23（9）：1022－1027．
［10］Rykowski R，Kostal H．Novel approach for LED luminous intensity measurement［C］／／Proceedings of SPIE－The International Society for Optical Engineering，2008： 69100.
［11］Wu TP，Tang CK．Dense photometric stereo using a mirror sphere and graph cut［C］／／Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition，2005： 140－147．
［12］Wong KYK，Schnieders D，Li S．Recovering light directions and camera poses from a single sphere［C］／／ Computer Vision－ECCV 2008：the 10th European Conference on Computer Vision，2008：631－642．
［13］Kato K，Sakaue F，Sato J．Extended multiple view geometry for lights and cameras from photometric and geometric constraints［C］／／The 20th International Conference on Pattern Recognition， 2010：2110－2113．
［14］Schnieders D，Wong KYK．Camera and light calibration from reflections on a sphere［J］． Computer Vision and Image Understanding，2013， 117（10）：1536－1547．
［15］Alldrin NG，Kriegman DJ．A planar light probe［C］／／ Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition，2006：2324－2330．
［16］Weber M，Cipolla R．A practical method for
estimation of point light－sources［C］／／British Machine Vision Conference，2001：1－10．
［17］Ackermann J，Fuhrmann S，Goesele M．Geometric point light source calibration［M］／／Vision， Modeling \＆Visualization，2013：161－168．
［18］Takai T，Maki A，Niinuma K，et al．Difference sphere：an approach to near light source estimation ［J］．Computer Vision and Image Understanding， 2009，113（9）：966－978．
［19］Park J，Sinha SN，Matsushita Y，et al．Calibrating a non－isotropic near point light source using a plane ［C］／／ 2014 IEEE Conference on Computer Vision and Pattern Recognition，2014：2267－2274．
［20］Canny J．A computational approach to edge detection［J］．IEEE Transactions on Pattern Analysis and Machine Intelligence，1986，8（6）：679－698．
［21］Zhang ZY．A flexible new technique for camera calibration［J］．IEEE Transactions on Pattern Analysis and Machine Intelligence，2000，22（11）： 1330－1334．
［22］Koks D．Explorations in Mathematical Physics： The Concepts Behind an Elegant Language［M］． Springer Science \＆Business Media， 2006.

[^0]: 收稿日期：2016－04－27 修回日期：2016－06－16
 基金项目：国家自然科学基金（61375041）；深圳市基础研究项目（JCYJ20120903092425971，JCYJ20130402113127502，JCY20140509174140685）作者简介：聂颖，硕士研究生，研究方向为计算机视觉；宋展（通讯作者），研究员，博士生导师，研究方向为计算机视觉与三维重建， E－mail：zhan．song＠siat．ac．cn；焦国华，副研究员，硕士生导师，研究方向为光电传感技术和微光学制造。

