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摘  要  目前的神经网络结构自动化设计方法主要对所设计神经网络结构的预测准确率进行优化。然

而，实际应用中经常要求所设计的神经网络结构满足特定的代价约束，如内存占用、推断时间和训练

时间等。该文提出了一种新的限定代价下的神经网络结构自动化设计方法，选取内存占用、推断时间

和训练时间三类代表性代价在 CIFAR10 数据集上进行了实验，并与现有方法进行了对比分析。该方法

获得了满足特定代价约束的高准确率的卷积神经网络结构，可优化的代价种类比现有方法更多。
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Abstract  Recently, automated neural network architecture design (neural architecture search) has yielded 
many significant achievements. Improving the prediction accuracy of the neural network is the primary goal. 
However, besides the prediction accuracy, other types of cost including memory consumption, inference time, and 
training time are also very important when implementing the neural network. In practice, such types of cost are 
often bounded by thresholds. Current neural architecture search method with budgeted cost constraints can only 
optimize some specific types of the cost. In this paper, we propose budgeted efficient neural architecture search 
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1 Introduction 

The designing of neural network architecture is a 
fundamental problem in deep learning. However, this 
process is mainly done manually. It is a challenging and 
tedious task to design an efficient network architecture, 
especially for large scale neural network. Recently, 
some automated neural network architecture search 
methods have been proposed, such as reinforcement 
learning based methods[1-3] and evolution algorithm based 
methods[4-6], etc. However, these methods only focus 
on the prediction accuracy of the designed architecture. 
Usually, the prediction accuracy is not the only aspect 
that we have to consider. There are some other important 
types of cost which should be considered in practice, e.g., 
the memory consumption, the inference time and the 
training time. For example, for embedded devices with 
limited memory, the network size that can be tolerated 
is quite restricted. For systems with high real-time 
requirements, high computational latency is unacceptable.
 For neural architecture search problem with budgeted 
cost constraints, there is a method called BSN (budgeted 
super network)[7] that can handle various types of 
cost, but it is not able to optimize the cost that cannot 
be known before training. In this paper, we propose 
a method, say budgeted efficient neural architecture 
search (B-ENAS). Comparing to BSN, besides the 
types of cost that can be known before training, e.g., the 
memory consumption and the inference time, B-ENAS 
can also optimize the cost that can only be obtained 

after training, like the training time.

2 Related Work

2.1 Neural architecture search

Recently, researches on automated neural network 
architecture search (neural architecture search) have 
come a long way. The current neural architecture 
search methods can mainly be divided into three 
types: reinforcement learning based, evolution 
algorithm based and other methods that are 
different from the former two. The general idea of 
reinforcement learning based methods is to firstly 
define the search space of the network architecture. 
Then, sample the network architecture in the search 
space through an agent. Finally, use the accuracy of 
the sampled architecture as the reward and train the 
agent by maximizing the cumulative reward. The 
most representative works are works of Zoph and 
Le[1] and Baker et al.[8], but these two methods train 
the sampled architecture from scratch with a very 
high computation cost, e.g., hundreds to thousands 
of GPU days. Many interesting approaches have 
been come up to overcome this drawback. Baker et 
al.[9] predict the final performance of the partially 
trained model to stop the training process as early 
as possible. Brock et al.[10] use a HyperNetwork to 
generate the weights of a model conditioned on that 
model’s architecture. Jin et al.[11], Cai et al.[12] and 
Zhong et al.[13] implement network transformations/

(B-ENAS) to optimize more types of cost. The experimental results on the well-adopted CIFAR10 dataset show that 
B-ENAS can learn convolutional neural network architectures with high accuracy under different cost constraints. 

Keywords deep learning; reinforcement learning; convolutional neural network; neural architecture search; 
cost optimization
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morphisms to explore the architecture search space 
based on the classic networks and reuse the weights 
instead of starting from scratch. In the work of 
Zoph et al.[2], the RL agent learns to sample a cell 
(layer) which is repeatedly concatenated to form a 
complete model. It is much faster than searching 
for a complete model and the cell itself is more 
likely to be generalized to other problems. The idea 
of learning cells is also given in works of Pham et 
al.[3], Real et al.[5], Zhong et al.[14] and Liu et al.[15]. 
ENAS (efficient neural architecture search)[3] is a 
new method that further improved on NAS (neural 
architecture search)[1] and NASNet[2]. ENAS is 10X 
faster and 3X less resource-demanding than the 
original NAS method through parameter sharing. 
ENAS also achieves better accuracy than NAS and 
NASNet.
 Another important type of network architecture 
search method is evolution algorithm based 
methods[4-6,15]. In addition, Saxena et al.[16] start 
with training a large network called “convolution 
neural fabric” and prune it in the end. Negrinho et 
al.[17] proposed an extensive and modular language 
for architecture search. It can leverage the structure 
of search space to introduce different architecture 
search methods. Liu et al.[18] showed an algorithm 
called progressive neural architecture search (PNAS) 
which uses a sequential model-based optimization 
(SMBO) strategy. Elsken et al.[19] proposed an 
algorithm called neural architecture search by 
hillclimbing (NASH) which is based on a simple hill 
climbing procedure. Recently, being different from 
conventional approaches that applying reinforcement 
learning or evolution, Liu et al.[20] formulate the 
neural architecture search problem in a differentiable 
manner, which is much faster than those non-

differentiable techniques.

2.2 Cost optimization

All of the neural architecture search methods 
mentioned in the previous part only optimize the 
accuracy of the designed network. In practice, the 
prediction accuracy usually is not the only aspect 
that should be considered. We may care more about 
other types of cost, e.g., the memory consumption, 
the inference time and the training time, etc. For 
instance, in embedded devices with limited memory, 
we may have a demand like “the model size is 
less than 50 Mb”. For systems with high real-time 
requirements, we may have a requirement like 
“the inference time is less than 3 milliseconds”. To 
solve these problems, Dong et al.[21] and Huang et 
al.[22] optimize the inference time by designing a 
special network architecture, but these two methods 
can only be used to optimize the inference time. 
The most relevant research on neural network cost 
optimization is the network compression methods, 
such as Hassibi et al.[23], Vanhoucke et al.[24] and Han 
et al.[25], but these network compression methods 
are posterior, that is, it must be done on an obtained 
model. Can we have a method that can actively 
choose an architecture that satisfies certain cost 
constraint in the process of network architecture 
search? Veniat and Denoyer[7] proposed a method 
called BSN which tries to find neural network 
architectures that satisfy certain cost constraints in 
the searching process. BSN samples the network 
architecture in a predefined network architecture 
search space by a parameter distribution, then adds 
up the cross-entropy loss of the sampled network 
architecture and the cost to be optimized (e.g., the size 
of parameters) together as the new loss, finally uses 
policy gradient method to minimize the new loss to 
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train the parameters of the parameter distribution 
and sampled network architecture. Because the 
parameters of the parameter distribution and sampled 
network architecture are trained simultaneously, this 
method cannot optimize the cost (e.g., the training 
time) which can only be obtained after training the 
sampled network architecture.

3 Methods

Our method is mainly inspired by the reinforcement 
learning based neural network architecture search 
method ENAS [3] which great ly  reduces  the 
calculation of the same kind methods NAS[1] and 
NASNet[2] through parameter sharing. Our method 
is proposed to solve neural architecture search 
problem with budgeted cost constraints, so it is 
named by B-ENAS. These NAS-like methods[1-3] 
are of the similar framework. They use a recurrent 
neural network as the controller to sample the 
network architecture A in a predefined search space. 
As shown in Fig. 1, the controller uses A’s accuracy 
on the validation set as the reward R and is trained 
with policy gradient to maximize the expected 
reward.

 Fig. 1 Procedure of NAS-like algorithms

 Note that the final result obtained by the ENAS 
method is not a single model but a family of models 
with similar accuracy. These models differ much in 

cost. The controller is trained by maximizing the 
expected reward with policy gradient. The reward 
is the only feedback that the controller needs during 
the training process. This inspires us whether these 
different types of cost can be reasonably used to 
penalize the reward R to optimize the controller and 
enable it to select network architectures that satisfy 
certain cost constraints.
 Our method B-ENAS is mainly based on ENAS. 
The main differences of B-ENAS and ENAS are as 
follows:
 (1) Use the cost of the sampled neural network 
architecture to penalize the reward through a 
designed penalty function to make the controller 
be able to sample neural network architectures that 
satisfy certain cost constraints. More details of this 
point are given in part 3.2.
 (2) The number of blocks in a cell is not fixed 
but decided by the controller, so the search space 
is bigger and the potential sampled network 
architectures are more diversified. More details of 
this point are given in part 3.1.
  The main steps of our method are shown in Fig. 2.

 Fig. 2 Procedure of B-ENAS

 In step a,  the controller samples network 
architecture in the predefined search space. Note 
that the controller samples only one cell (layer). We 
will explain later why we sample a cell rather than 
a complete model. In step b, assemble a complete 
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child model using the cell sampled by the controller 
in step a. In step c, train the child model. In step d, 
obtain the accuracy acc of the child model on the 
validation set. In step e, calculate the cost of the 
child model. In step f, use cost in step e to penalize 
accuracy in step d to get the reward R. In step g, use 
R calculated in step f to train the controller.
 In our method, the controller and child are trained 
alternately, in this way, B-ENAS can not only 
optimize the memory consumption and the inference 
time, but also the training time, which cannot 
be known before training the child model. The 
experimental results on CIFAR10 dataset show the 
performance of our method in dealing with different 
types of cost.
 In the following parts, we will describe and 
analyze each component of B-ENAS respectively:
 (1) How to sample the network architecture and 
assemble the sampled architecture into a complete 
model and train it. 
 (2) How to use the accuracy and cost to calculate 
the reward. 
 (3) How to train the controller. 

3.1 Sample cell and train child model

For steps a and b of B-ENAS, we don’t directly 
sample the complete network as many previous 
methods[1,8] did, but like NASNet[2], BlockQNN[14] 
and ENAS[3], we sample a small cell and then use 
this cell to build a complete model. The construction 
approach is shown in Fig. 3. The advantage of such 
idea is obvious, it can improve the computational 
efficiency of the algorithm, and small cells’ 
transferability is better than the complete network[2].
 Being different from NASNet and ENAS, the 
architecture of convolution cell and reduction 
cell is the same in our method. But the step of 

convolution and pooling are different. The step 
size of convolution cell is 1, while the step size of 
reduction cell is 2. A cell consists of multiple blocks. 
The number of blocks in each cell of NASNet and 
ENAS is specified manually. Different from these 
methods, the number of blocks in B-ENAS is learned 
by the controller. The basic components of the cell 
are the same as NASNet and ENAS. Each block in 
the cell has two inputs, which are labeled as ind1 and 
ind2, respectively. Candidate inputs of the current 
block are the two cells before current cell and blocks 
before current block in current cell. For example, 
for a model with 5 cells and each cell has 3 blocks. 
For the fourth cell’s third block, the potential inputs 
are cell2, cell3, cell4-block1 and cell4-block2. After 
determining the two inputs of current block, we need 
to select operations for the two inputs separately. 
The operations of the two inputs are recorded as 
op1 and op2 respectively. There are 5 types of 
optional operations: identity, separable convolution 
with kernel size 3×3 and 5×5, average pooling and 
max pooling with kernel size 3×3. Fig. 4 shows an 
example of the controller’s sampling process and the 
corresponding cell, where n is the maximum number 
of blocks that can be selected, and b represents that 

 

Fig. 3 Build model from cell



许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 47

we select the former b blocks in n to construct the 
cell. In this example, b=2. The composition of the 
two blocks and the corresponding cell consisting of 
these two blocks are shown in Fig. 4, too.
 For step c of B-ENAS, we use  to denote 
the controller’s sampling policy, in which θ is the 
parameters of the controller and  is the search space 
of cells. As shown in Fig. 2, the learning process of 
B-ENAS is iterative. Let a epoch denote one update 
round of the child and the controller. In B-ENAS, 
epochs executed iteratively until the controller and 
child converge to a stable state. Note that the search 
space of cells in different epochs is same, the child 
models in different epochs may share some parts in 
common, which is utilized by ENAS to speed up the 
processing. Let Ω denote the shared parameters of 
different child models in different epochs. Intuitively, 
we can assume that current child model initially 
use parameters of models in former epochs. Thus, 
the processing can be much faster than learning 
from scratch. For the shared parameters of the child 
models, the loss function we need to optimize is the 
expected loss function , where m 

denotes the model that containing the cell sampled 
by the controller in different epochs. Here, Monte 
Carlo estimation is used as the unbiased estimation 
of the loss function:
             
       

(1)

Where mi is the model containing the cell sampled in 
epoch i, ∈Ω is the parameters of mi and  
is the standard cross-entropy loss of the model mi 

which is calculated on a mini-batch. According to 
the work of Williams et al.[26], if we use the SGD 
(stochastic gradient descent) to update and the 
learning rate is reasonably selected, the estimation 
will be eventually converged. Pham et al.[3] showed 
by experiments that the sampling times  is 
reasonable.

3.2 Calculate reward

Before the reward calculation (step f), step d and 
step e should be performed to obtain the prediction 
accuracy of the current child model and the cost to 
be optimized on the validation set, respectively.
 Actually, these two steps are quite intuitive, so we 
don’t describe them in detail. One of the contribution 

 Fig. 4 The controller’s sampling process
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of our work is the reward function, which is shown 
as follows:
                (2)
Where α∈[0,1] is the weighting coefficient, 
accuracy is the prediction accuracy of the child 
model, penalty is the penalty value calculated 
according to the cost. The penalty is calculated 
through the penalty function (Fig. 5):

     
         (3)

Where , c  is the value of the cost to be 
optimized, Uc is the upper bound of the cost which is 
the maximum of the cost we can bear. For instance, 
in embedded devices with limited memory, we may 
have a demand like “the model size is less than 
50 Mb”. In this condition Uc is 50 Mb and notice 
that the unit measure of c and Uc must match. When 
c is lower than Uc, there is no penalty. When c is 
bigger than Uc but less than 10Uc, there is a linear 
relationship between penalty and c, and β is used 
to adjust the slope and the maximum amount of 
penalty, the relationship between penalty and c can 
also be nonlinear as long as penalty increases with  
c. We cut off the penalty function when c exceeds  

10Uc to prevent extreme values of c from affecting 
the convergence.

3.3 Train controller

In B-ENAS, the controller is a 2-layer long short-
term memory (LSTM) model. For the last step g, we 
use policy gradient method to maximize its expected 
reward to train the controller. The expected reward 
of the controller is:

                           (4)
Where  is the sample policy of the controller 
and R is the reward. 
 The REINFORCE[26-27] algorithm is used to train 
the controller. The gradient of θ is as follows:
      
       (5)

Where n is the number of sampled cells, Ri is the 
reward of the model containing cell i and avg is the 
reward’s exponential moving average which can 
reduce the variance of the reward.

3.4 Pseudo-code of B-ENAS

In this part, we formally describe each component 
of B-ENAS. The symbols to be used in the pseudo-
code are listed as follows (table 1).

Table 1 Symbols in Pseudo-code

 

Fig. 5 Penalty function
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 The main procedure of B-ENAS is shown in 
Algorithm 1.

 During the execution of B-ENAS, an epoch 
consists of two phases in Algorithm 1. In phase 1, 
fix the parameters of the controller θ and implement 
Algorithm 2 (TrainChild) to train the parameters 
of the child Ω. In phase 2, fix the parameters of the 
child Ω and implement Algorithm 3 (TrainController) 
to train the parameters of the controller θ. After 
e epochs’ training, Algorithm 4 (SelectCell) will 
be executed to select a suitable C that satisfies the 
constraint. The output C of B-ENAS is the best 
selected cell, which will be used to build the training 
model, following the procedure shown in Fig. 3.
 In Algorithm 2, we train the child on b mini-
batches iteratively. For each mini-batch, we first 
sample a cell c. Then, use the sampled cell c to build 
a child model m (as shown in Fig. 3). Finally, train 
the model m on the current mini-batch by minimizing 
the cross-entropy loss (as shown in Formula (1) with 

M＝1). In this procedure,  is the size of current 
mini-batch.
 In Algorithm 3, we train the controller for s   
rounds. In each round, line 2 to line 9 are executed 
in order. We first sample a cell c and use this cell 
c to build a child model m. Then, the model m is 
validated on a mini-batch to get the accuracy acc. 

After obtaining model  m’s cost, the penalty will be 
calculated according to penalty function (Formula 
(3)), the reward R will be calculated according to 
reward function (Formula (2)). We then compute the 
gradient of the controller’s parameters θ by Formula 
(2). Finally, update the controller’s parameters θ.

 In Algorithm 4, we choose 10 cells and select the 
most suitable one among them. The selection criteria 
is the product of the accuracy and the cost instead of 
only the accuracy. The number of epochs to search is 
limited due to the search efficiency, but the number 
of parameters shared between different child models 
Ω is quite huge. So during the search process, the 
shared parameters have no need to be fully trained. If 
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the cost of the sampled cell is larger, that is, the more 
complex the cell is, the greater impact of the lack of 
sufficient training is. So the product of the accuracy 
and the cost can be justified as the selection indicator. 
Under the premise of satisfying these constraints, the 
cells with higher value will be selected firstly.

4 Experiments and Results

4.1 Experiments

Datasets: Our experiments are carried on the 
CIFAR-10 dataset. The data preprocessing and 
augmentation procedures are same as other works in 
this domain, i.e. subtracting the channel mean and 
dividing the channel standard deviation, centrally 
padding the training images to 40×40 and randomly 
cropping them back to 32×32, and randomly flipping 
them horizontally.
 Search space: The number of blocks of each cell 
ranges in [2, 7]( b in Fig. 4). Each block in the cell 
has two inputs. The candidate input of the current 
block contains two cells before the current cell 
and the blocks before current block in current cell. 
The five options for these two inputs are identity, 

separable convolution with kernel size 3×3 and 5×5, 
average pooling and max-pooling with kernel size 
3×3.
 Training details: As mentioned before, the 
B-ENAS can be divided into two phases. In the 
first phase, only the shared parameters Ω between 
child models will be updated, while in the second 
phase, only the parameters θ of the controller will 
be updated. The setting of the training is similar to 
ENAS, as shown in table 2.

Table 2 Training details of ENAS

 Noted that in the searching process of B-ENAS, 
in order to improve the search efficiency, we use 
the sampled cell to build a 3-layer model and train 
it on a mini-batch. At the end of B-ENAS, we use 
the controller to sample 10 cells, and the cell with 
the largest product of the accuracy and the cost will 
be selected to build a 11-layer final model, which 
will be trained on the whole dataset. The training 
procedure is the same as in the first phase.
 The setting of B-ENAS: Let α in the reward 
function to be 0.1, β in the penalty function to be 
1. We tested several different values of α and β in 
the experiments of memory consumption cost and 
found that B-ENAS is not sensitive to the value of 
these two super-parameters. 0.1 and 1 is a reasonable 
setting, so we also took it as the default setting in the 
experiments of the inference time and the training 
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time. It is recommended to use this setting as the 
default setting for B-ENAS. The mini-batch size is 
160, b in Algorithm 2 is , s in Algorithm 3 
is 30, e in Algorithm 1 is 150. In order to improve 
the training efficiency and transferability, we search 
for cells instead of the complete model. Therefore, 
we have to estimate the Uc of the cell according to 
the Uc of the complete model. Since the final model 
is stacked by the cell, the Uc of the cell can be 
estimated based on the Uc of the final model.

4.2 Results

A s  m e n t i o n e d  b e f o r e ,  w e  c o n s i d e r  t h r e e 
important types of cost in the neural network 
architecture design:
 (1) The inference time, measured by the number of 
floating-point operations on predicting the label of a 
32×32×3 image.
 (2) The memory consumption, measured by the 
size of trainable parameters.
 (3) The training time, measured by the training 
time on one Tesla K80 GPU.
 The experimental results of BSN[7] are from the 
original paper.
 For the inference time, the comparison of BSN 
and our method B-ENAS on the inference time is 
shown in table 3.
 BSN can also be used to optimize the memory 
consumption, the results of BSN and our method 
B-ENAS on the memory consumption are shown in 
table 4.
 BSN cannot optimize the training time, since the 
training time can only be obtained after training 
the sampled child model. Thanks to the interactive 
learning procedure, our method, B-ENAS, can 
handle the training time. The results of B-ENAS on 
the training time is shown in table 5.

Table 5 Results on training time

5 Discussion

Experiments on these three types of cost show that 
our method is better than BSN on the accuracy. 
The accuracy of our method does not increase 

Table 4 Results on memory consumption

Table 3 Results on inference time
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monotonously with the increased cost as the BSN 
does. This is because the controller has some 
randomness when sampling network architectures. 
And in order to handle the insufficient training 
problem, we introduce the product of the accuracy 
and the cost as the selection indicator when 
determining the final cell. The upper bound of the 
accuracy is largely determined by the definition 
of the search space. But in fact, the search space 
of different methods varies a lot. Even for the 
same method, the search space will be different on 
different problems. So the accuracy should not be the 
only consideration and the ability to satisfy different 
cost constraints is more important. Through these 
experiments, we can see that the proposed method 
B-ENAS can learn the network architecture with 
different cost constraints as BSN does. Besides the 
cost that can be known before training the sampled 
child model, e.g., the inference time and the memory 
consumption, B-ENAS can also optimize the cost 
that can only be known after training the sampled 
child model like the training time. 
 Consider the cells corresponding to the two models 
with 1.96 millions and 3.36 millions parameters in 
the experiments of the memory consumption, as 
shown in Fig. 6 and Fig. 7, respectively. The cell 
architecture is simple when the upper bound of the 
cost is low and is more complicated when the upper 
bound is higher, which is in line with intuition.
 Although B-ENAS has achieved good results in 
the current experiments, it still has many things to 
improve:
 (1) Because of limited computing resources and 
time, many important experiments have not been 
carried out. We have only performed experiments 
on the CIFAR10 dataset and further experiments can 

be performed on other datasets such as CIFAR100, 
SVHN and MNIST. We only experimented with 
one form of penalty function, and we can further 
experiment with other forms of penalty function. The 
search space does not differ too much from ENAS. 
If the computing resources are sufficient, the search 
space can be further expanded to make the sampled 
network architecture more complicated. 

 Fig. 7 Cell for model of 3.36 millions parameters

 Fig. 6 Cell for model of 1.96 millions parameters
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 (2) The search space has to be decided manually. 
The search space has a decisive influence on the 
result of B-ENAS. If the definition of the search 
space is unreasonable, so there is no network 
architecture can satisfy the cost constraint in the 
search space, then the final result of B-ENAS 
is certainly not ideal. Therefore, in practical 
applications, we need to define the search space 
carefully according to specific problems. This is also 
a common problem of current neural architecture 
search methods.
 (3) The same as BSN, B-ENAS is also soft 
constrained, that is, it is not theoretically guaranteed 
to be able to search for a network architecture that 
satisfies the cost constraint. 

6 Conclusion

In this paper we propose a method B-ENAS to 
handle the neural architecture search problem with 
budgeted cost constraints. Especially, to be able to 
optimize more types of cost than current method 
BSN. B-ENAS is inspired by current reinforcement 
learning based neural architecture search method 
ENAS. The basic idea of B-ENAS is to use 
different types of cost to penalize the reward so as 
to make the agent select network architectures that 
satisfy certain cost constraints. The effectiveness of 
B-ENAS is verified in experiments on the memory 
consumption, the inference time and the training 
time. B-ENAS optimizes these types of cost in the 
network architecture search process. As mentioned 
before, the network compression methods do such 
optimization in a posterior way. Therefore, it is 
quite interesting to study the combination of the 
NAS-like methods and the network compression 

methods in the future.
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