
第 8 卷 第 3 期

2019 年 5 月

集 成 技 术

JOURNAL OF INTEGRATION TECHNOLOGY

Vol. 8 No. 3

May 2019

电子信息

收稿日期：2019-02-25 修回日期：2019-03-05
基金项目：国家自然科学基金重点项目(61433012)；科技部重点研发计划项目(2018YFB0204005)
作者简介：许强，硕士研究生，研究方向为深度学习及强化学习应用；徐杨杰，硕士研究生，研究方向为深度学习及强化学习应用；姜玉林，

硕士研究生，研究方向为深度学习应用；张涌(通迅作者)，博士，研究员，博士研究生导师，研究方向为算法优化、分布式计算、大数据等，

E-mail：zhangyong@siat.ac.cn。

一种基于强化学习的限定代价下卷积神经网结构

自动化设计方法

许 强1,2 徐杨杰1,2 姜玉林1 张 涌1,2

1(中国科学院深圳先进技术研究院 深圳 518055)
2(中国科学院大学 北京 100049)

摘  要  目前的神经网络结构自动化设计方法主要对所设计神经网络结构的预测准确率进行优化。然

而，实际应用中经常要求所设计的神经网络结构满足特定的代价约束，如内存占用、推断时间和训练

时间等。该文提出了一种新的限定代价下的神经网络结构自动化设计方法，选取内存占用、推断时间

和训练时间三类代表性代价在 CIFAR10 数据集上进行了实验，并与现有方法进行了对比分析。该方法

获得了满足特定代价约束的高准确率的卷积神经网络结构，可优化的代价种类比现有方法更多。

关键词  深度学习；强化学习；卷积神经网；网络结构搜索；代价优化

中图分类号  TP 39 文献标志码  A doi: 10.12146/j.issn.2095-3135.20190225001

Automatically Design Cost-Constrained Convolutional Neural Network
Architectures with Reinforcement Learning

XU Qiang1,2 XU Yangjie1,2 JIANG Yulin1 ZHANG Yong1,2

 1(Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract Recently, automated neural network architecture design (neural architecture search) has yielded
many significant achievements. Improving the prediction accuracy of the neural network is the primary goal.
However, besides the prediction accuracy, other types of cost including memory consumption, inference time, and
training time are also very important when implementing the neural network. In practice, such types of cost are
often bounded by thresholds. Current neural architecture search method with budgeted cost constraints can only
optimize some specific types of the cost. In this paper, we propose budgeted efficient neural architecture search

引文格式：

许强, 徐杨杰, 姜玉林, 等. 一种基于强化学习的限定代价下卷积神经网结构自动化设计方法 [J]. 集成技术, 2019,
8(3): 42-54.
Xu Q, Xu YJ, Jiang YL, et al. Automatically designing the cost-constrained convolutional neural network architectures
with reinforcement learning [J]. Journal of Integration Technology, 2019, 8(3): 42-54.

许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 43

1 Introduction 

The designing of neural network architecture is a
fundamental problem in deep learning. However, this
process is mainly done manually. It is a challenging and
tedious task to design an efficient network architecture,
especially for large scale neural network. Recently,
some automated neural network architecture search
methods have been proposed, such as reinforcement
learning based methods[1-3] and evolution algorithm based
methods[4-6], etc. However, these methods only focus
on the prediction accuracy of the designed architecture.
Usually, the prediction accuracy is not the only aspect
that we have to consider. There are some other important
types of cost which should be considered in practice, e.g.,
the memory consumption, the inference time and the
training time. For example, for embedded devices with
limited memory, the network size that can be tolerated
is quite restricted. For systems with high real-time
requirements, high computational latency is unacceptable.
 For neural architecture search problem with budgeted
cost constraints, there is a method called BSN (budgeted
super network)[7] that can handle various types of
cost, but it is not able to optimize the cost that cannot
be known before training. In this paper, we propose
a method, say budgeted efficient neural architecture
search (B-ENAS). Comparing to BSN, besides the
types of cost that can be known before training, e.g., the
memory consumption and the inference time, B-ENAS
can also optimize the cost that can only be obtained

after training, like the training time.

2 Related Work

2.1 Neural architecture search

Recently, researches on automated neural network
architecture search (neural architecture search) have
come a long way. The current neural architecture
search methods can mainly be divided into three
types: reinforcement learning based, evolution
algorithm based and other methods that are
different from the former two. The general idea of
reinforcement learning based methods is to firstly
define the search space of the network architecture.
Then, sample the network architecture in the search
space through an agent. Finally, use the accuracy of
the sampled architecture as the reward and train the
agent by maximizing the cumulative reward. The
most representative works are works of Zoph and
Le[1] and Baker et al.[8], but these two methods train
the sampled architecture from scratch with a very
high computation cost, e.g., hundreds to thousands
of GPU days. Many interesting approaches have
been come up to overcome this drawback. Baker et
al.[9] predict the final performance of the partially
trained model to stop the training process as early
as possible. Brock et al.[10] use a HyperNetwork to
generate the weights of a model conditioned on that
model’s architecture. Jin et al.[11], Cai et al.[12] and
Zhong et al.[13] implement network transformations/

(B-ENAS) to optimize more types of cost. The experimental results on the well-adopted CIFAR10 dataset show that
B-ENAS can learn convolutional neural network architectures with high accuracy under different cost constraints.

Keywords deep learning; reinforcement learning; convolutional neural network; neural architecture search;
cost optimization

集 成 技 术 2019 年 44

morphisms to explore the architecture search space
based on the classic networks and reuse the weights
instead of starting from scratch. In the work of
Zoph et al.[2], the RL agent learns to sample a cell
(layer) which is repeatedly concatenated to form a
complete model. It is much faster than searching
for a complete model and the cell itself is more
likely to be generalized to other problems. The idea
of learning cells is also given in works of Pham et
al.[3], Real et al.[5], Zhong et al.[14] and Liu et al.[15].
ENAS (efficient neural architecture search)[3] is a
new method that further improved on NAS (neural
architecture search)[1] and NASNet[2]. ENAS is 10X
faster and 3X less resource-demanding than the
original NAS method through parameter sharing.
ENAS also achieves better accuracy than NAS and
NASNet.
 Another important type of network architecture
search method is evolution algorithm based
methods[4-6,15]. In addition, Saxena et al.[16] start
with training a large network called “convolution
neural fabric” and prune it in the end. Negrinho et
al.[17] proposed an extensive and modular language
for architecture search. It can leverage the structure
of search space to introduce different architecture
search methods. Liu et al.[18] showed an algorithm
called progressive neural architecture search (PNAS)
which uses a sequential model-based optimization
(SMBO) strategy. Elsken et al.[19] proposed an
algorithm called neural architecture search by
hillclimbing (NASH) which is based on a simple hill
climbing procedure. Recently, being different from
conventional approaches that applying reinforcement
learning or evolution, Liu et al.[20] formulate the
neural architecture search problem in a differentiable
manner, which is much faster than those non-

differentiable techniques.

2.2 Cost optimization

All of the neural architecture search methods
mentioned in the previous part only optimize the
accuracy of the designed network. In practice, the
prediction accuracy usually is not the only aspect
that should be considered. We may care more about
other types of cost, e.g., the memory consumption,
the inference time and the training time, etc. For
instance, in embedded devices with limited memory,
we may have a demand like “the model size is
less than 50 Mb”. For systems with high real-time
requirements, we may have a requirement like
“the inference time is less than 3 milliseconds”. To
solve these problems, Dong et al.[21] and Huang et
al.[22] optimize the inference time by designing a
special network architecture, but these two methods
can only be used to optimize the inference time.
The most relevant research on neural network cost
optimization is the network compression methods,
such as Hassibi et al.[23], Vanhoucke et al.[24] and Han
et al.[25], but these network compression methods
are posterior, that is, it must be done on an obtained
model. Can we have a method that can actively
choose an architecture that satisfies certain cost
constraint in the process of network architecture
search? Veniat and Denoyer[7] proposed a method
called BSN which tries to find neural network
architectures that satisfy certain cost constraints in
the searching process. BSN samples the network
architecture in a predefined network architecture
search space by a parameter distribution, then adds
up the cross-entropy loss of the sampled network
architecture and the cost to be optimized (e.g., the size
of parameters) together as the new loss, finally uses
policy gradient method to minimize the new loss to

许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 45

train the parameters of the parameter distribution
and sampled network architecture. Because the
parameters of the parameter distribution and sampled
network architecture are trained simultaneously, this
method cannot optimize the cost (e.g., the training
time) which can only be obtained after training the
sampled network architecture.

3 Methods

Our method is mainly inspired by the reinforcement
learning based neural network architecture search
method ENAS [3] which great ly reduces the
calculation of the same kind methods NAS[1] and
NASNet[2] through parameter sharing. Our method
is proposed to solve neural architecture search
problem with budgeted cost constraints, so it is
named by B-ENAS. These NAS-like methods[1-3]
are of the similar framework. They use a recurrent
neural network as the controller to sample the
network architecture A in a predefined search space.
As shown in Fig. 1, the controller uses A’s accuracy
on the validation set as the reward R and is trained
with policy gradient to maximize the expected
reward.

 Fig. 1 Procedure of NAS-like algorithms

 Note that the final result obtained by the ENAS
method is not a single model but a family of models
with similar accuracy. These models differ much in

cost. The controller is trained by maximizing the
expected reward with policy gradient. The reward
is the only feedback that the controller needs during
the training process. This inspires us whether these
different types of cost can be reasonably used to
penalize the reward R to optimize the controller and
enable it to select network architectures that satisfy
certain cost constraints.
 Our method B-ENAS is mainly based on ENAS.
The main differences of B-ENAS and ENAS are as
follows:
 (1) Use the cost of the sampled neural network
architecture to penalize the reward through a
designed penalty function to make the controller
be able to sample neural network architectures that
satisfy certain cost constraints. More details of this
point are given in part 3.2.
 (2) The number of blocks in a cell is not fixed
but decided by the controller, so the search space
is bigger and the potential sampled network
architectures are more diversified. More details of
this point are given in part 3.1.
 The main steps of our method are shown in Fig. 2.

 Fig. 2 Procedure of B-ENAS

 In step a, the controller samples network
architecture in the predefined search space. Note
that the controller samples only one cell (layer). We
will explain later why we sample a cell rather than
a complete model. In step b, assemble a complete

集 成 技 术 2019 年 46

child model using the cell sampled by the controller
in step a. In step c, train the child model. In step d,
obtain the accuracy acc of the child model on the
validation set. In step e, calculate the cost of the
child model. In step f, use cost in step e to penalize
accuracy in step d to get the reward R. In step g, use
R calculated in step f to train the controller.
 In our method, the controller and child are trained
alternately, in this way, B-ENAS can not only
optimize the memory consumption and the inference
time, but also the training time, which cannot
be known before training the child model. The
experimental results on CIFAR10 dataset show the
performance of our method in dealing with different
types of cost.
 In the following parts, we will describe and
analyze each component of B-ENAS respectively:
 (1) How to sample the network architecture and
assemble the sampled architecture into a complete
model and train it.
 (2) How to use the accuracy and cost to calculate
the reward.
 (3) How to train the controller.

3.1 Sample cell and train child model

For steps a and b of B-ENAS, we don’t directly
sample the complete network as many previous
methods[1,8] did, but like NASNet[2], BlockQNN[14]
and ENAS[3], we sample a small cell and then use
this cell to build a complete model. The construction
approach is shown in Fig. 3. The advantage of such
idea is obvious, it can improve the computational
efficiency of the algorithm, and small cells’
transferability is better than the complete network[2].
 Being different from NASNet and ENAS, the
architecture of convolution cell and reduction
cell is the same in our method. But the step of

convolution and pooling are different. The step
size of convolution cell is 1, while the step size of
reduction cell is 2. A cell consists of multiple blocks.
The number of blocks in each cell of NASNet and
ENAS is specified manually. Different from these
methods, the number of blocks in B-ENAS is learned
by the controller. The basic components of the cell
are the same as NASNet and ENAS. Each block in
the cell has two inputs, which are labeled as ind1 and
ind2, respectively. Candidate inputs of the current
block are the two cells before current cell and blocks
before current block in current cell. For example,
for a model with 5 cells and each cell has 3 blocks.
For the fourth cell’s third block, the potential inputs
are cell2, cell3, cell4-block1 and cell4-block2. After
determining the two inputs of current block, we need
to select operations for the two inputs separately.
The operations of the two inputs are recorded as
op1 and op2 respectively. There are 5 types of
optional operations: identity, separable convolution
with kernel size 3×3 and 5×5, average pooling and
max pooling with kernel size 3×3. Fig. 4 shows an
example of the controller’s sampling process and the
corresponding cell, where n is the maximum number
of blocks that can be selected, and b represents that

Fig. 3 Build model from cell

许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 47

we select the former b blocks in n to construct the
cell. In this example, b=2. The composition of the
two blocks and the corresponding cell consisting of
these two blocks are shown in Fig. 4, too.
 For step c of B-ENAS, we use to denote
the controller’s sampling policy, in which θ is the
parameters of the controller and is the search space
of cells. As shown in Fig. 2, the learning process of
B-ENAS is iterative. Let a epoch denote one update
round of the child and the controller. In B-ENAS,
epochs executed iteratively until the controller and
child converge to a stable state. Note that the search
space of cells in different epochs is same, the child
models in different epochs may share some parts in
common, which is utilized by ENAS to speed up the
processing. Let Ω denote the shared parameters of
different child models in different epochs. Intuitively,
we can assume that current child model initially
use parameters of models in former epochs. Thus,
the processing can be much faster than learning
from scratch. For the shared parameters of the child
models, the loss function we need to optimize is the
expected loss function , where m

denotes the model that containing the cell sampled
by the controller in different epochs. Here, Monte
Carlo estimation is used as the unbiased estimation
of the loss function:

(1)

Where mi is the model containing the cell sampled in
epoch i, ∈Ω is the parameters of mi and
is the standard cross-entropy loss of the model mi

which is calculated on a mini-batch. According to
the work of Williams et al.[26], if we use the SGD
(stochastic gradient descent) to update and the
learning rate is reasonably selected, the estimation
will be eventually converged. Pham et al.[3] showed
by experiments that the sampling times is
reasonable.

3.2 Calculate reward

Before the reward calculation (step f), step d and
step e should be performed to obtain the prediction
accuracy of the current child model and the cost to
be optimized on the validation set, respectively.
 Actually, these two steps are quite intuitive, so we
don’t describe them in detail. One of the contribution

 Fig. 4 The controller’s sampling process

集 成 技 术 2019 年 48

of our work is the reward function, which is shown
as follows:
 (2)
Where α∈[0,1] is the weighting coefficient,
accuracy is the prediction accuracy of the child
model, penalty is the penalty value calculated
according to the cost. The penalty is calculated
through the penalty function (Fig. 5):

 (3)

Where , c is the value of the cost to be
optimized, Uc is the upper bound of the cost which is
the maximum of the cost we can bear. For instance,
in embedded devices with limited memory, we may
have a demand like “the model size is less than
50 Mb”. In this condition Uc is 50 Mb and notice
that the unit measure of c and Uc must match. When
c is lower than Uc, there is no penalty. When c is
bigger than Uc but less than 10Uc, there is a linear
relationship between penalty and c, and β is used
to adjust the slope and the maximum amount of
penalty, the relationship between penalty and c can
also be nonlinear as long as penalty increases with
c. We cut off the penalty function when c exceeds

10Uc to prevent extreme values of c from affecting
the convergence.

3.3 Train controller

In B-ENAS, the controller is a 2-layer long short-
term memory (LSTM) model. For the last step g, we
use policy gradient method to maximize its expected
reward to train the controller. The expected reward
of the controller is:

 (4)
Where is the sample policy of the controller
and R is the reward.
 The REINFORCE[26-27] algorithm is used to train
the controller. The gradient of θ is as follows:

 (5)

Where n is the number of sampled cells, Ri is the
reward of the model containing cell i and avg is the
reward’s exponential moving average which can
reduce the variance of the reward.

3.4 Pseudo-code of B-ENAS

In this part, we formally describe each component
of B-ENAS. The symbols to be used in the pseudo-
code are listed as follows (table 1).

Table 1 Symbols in Pseudo-code

Fig. 5 Penalty function

许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 49

 The main procedure of B-ENAS is shown in
Algorithm 1.

 During the execution of B-ENAS, an epoch
consists of two phases in Algorithm 1. In phase 1,
fix the parameters of the controller θ and implement
Algorithm 2 (TrainChild) to train the parameters
of the child Ω. In phase 2, fix the parameters of the
child Ω and implement Algorithm 3 (TrainController)
to train the parameters of the controller θ. After
e epochs’ training, Algorithm 4 (SelectCell) will
be executed to select a suitable C that satisfies the
constraint. The output C of B-ENAS is the best
selected cell, which will be used to build the training
model, following the procedure shown in Fig. 3.
 In Algorithm 2, we train the child on b mini-
batches iteratively. For each mini-batch, we first
sample a cell c. Then, use the sampled cell c to build
a child model m (as shown in Fig. 3). Finally, train
the model m on the current mini-batch by minimizing
the cross-entropy loss (as shown in Formula (1) with

M＝1). In this procedure, is the size of current
mini-batch.
 In Algorithm 3, we train the controller for s
rounds. In each round, line 2 to line 9 are executed
in order. We first sample a cell c and use this cell
c to build a child model m. Then, the model m is
validated on a mini-batch to get the accuracy acc.

After obtaining model m’s cost, the penalty will be
calculated according to penalty function (Formula
(3)), the reward R will be calculated according to
reward function (Formula (2)). We then compute the
gradient of the controller’s parameters θ by Formula
(2). Finally, update the controller’s parameters θ.

 In Algorithm 4, we choose 10 cells and select the
most suitable one among them. The selection criteria
is the product of the accuracy and the cost instead of
only the accuracy. The number of epochs to search is
limited due to the search efficiency, but the number
of parameters shared between different child models
Ω is quite huge. So during the search process, the
shared parameters have no need to be fully trained. If

集 成 技 术 2019 年 50

the cost of the sampled cell is larger, that is, the more
complex the cell is, the greater impact of the lack of
sufficient training is. So the product of the accuracy
and the cost can be justified as the selection indicator.
Under the premise of satisfying these constraints, the
cells with higher value will be selected firstly.

4 Experiments and Results

4.1 Experiments

Datasets: Our experiments are carried on the
CIFAR-10 dataset. The data preprocessing and
augmentation procedures are same as other works in
this domain, i.e. subtracting the channel mean and
dividing the channel standard deviation, centrally
padding the training images to 40×40 and randomly
cropping them back to 32×32, and randomly flipping
them horizontally.
 Search space: The number of blocks of each cell
ranges in [2, 7](b in Fig. 4). Each block in the cell
has two inputs. The candidate input of the current
block contains two cells before the current cell
and the blocks before current block in current cell.
The five options for these two inputs are identity,

separable convolution with kernel size 3×3 and 5×5,
average pooling and max-pooling with kernel size
3×3.
 Training details: As mentioned before, the
B-ENAS can be divided into two phases. In the
first phase, only the shared parameters Ω between
child models will be updated, while in the second
phase, only the parameters θ of the controller will
be updated. The setting of the training is similar to
ENAS, as shown in table 2.

Table 2 Training details of ENAS

 Noted that in the searching process of B-ENAS,
in order to improve the search efficiency, we use
the sampled cell to build a 3-layer model and train
it on a mini-batch. At the end of B-ENAS, we use
the controller to sample 10 cells, and the cell with
the largest product of the accuracy and the cost will
be selected to build a 11-layer final model, which
will be trained on the whole dataset. The training
procedure is the same as in the first phase.
 The setting of B-ENAS: Let α in the reward
function to be 0.1, β in the penalty function to be
1. We tested several different values of α and β in
the experiments of memory consumption cost and
found that B-ENAS is not sensitive to the value of
these two super-parameters. 0.1 and 1 is a reasonable
setting, so we also took it as the default setting in the
experiments of the inference time and the training

许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 51

time. It is recommended to use this setting as the
default setting for B-ENAS. The mini-batch size is
160, b in Algorithm 2 is , s in Algorithm 3
is 30, e in Algorithm 1 is 150. In order to improve
the training efficiency and transferability, we search
for cells instead of the complete model. Therefore,
we have to estimate the Uc of the cell according to
the Uc of the complete model. Since the final model
is stacked by the cell, the Uc of the cell can be
estimated based on the Uc of the final model.

4.2 Results

A s m e n t i o n e d b e f o r e , w e c o n s i d e r t h r e e
important types of cost in the neural network
architecture design:
 (1) The inference time, measured by the number of
floating-point operations on predicting the label of a
32×32×3 image.
 (2) The memory consumption, measured by the
size of trainable parameters.
 (3) The training time, measured by the training
time on one Tesla K80 GPU.
 The experimental results of BSN[7] are from the
original paper.
 For the inference time, the comparison of BSN
and our method B-ENAS on the inference time is
shown in table 3.
 BSN can also be used to optimize the memory
consumption, the results of BSN and our method
B-ENAS on the memory consumption are shown in
table 4.
 BSN cannot optimize the training time, since the
training time can only be obtained after training
the sampled child model. Thanks to the interactive
learning procedure, our method, B-ENAS, can
handle the training time. The results of B-ENAS on
the training time is shown in table 5.

Table 5 Results on training time

5 Discussion

Experiments on these three types of cost show that
our method is better than BSN on the accuracy.
The accuracy of our method does not increase

Table 4 Results on memory consumption

Table 3 Results on inference time

集 成 技 术 2019 年 52

monotonously with the increased cost as the BSN
does. This is because the controller has some
randomness when sampling network architectures.
And in order to handle the insufficient training
problem, we introduce the product of the accuracy
and the cost as the selection indicator when
determining the final cell. The upper bound of the
accuracy is largely determined by the definition
of the search space. But in fact, the search space
of different methods varies a lot. Even for the
same method, the search space will be different on
different problems. So the accuracy should not be the
only consideration and the ability to satisfy different
cost constraints is more important. Through these
experiments, we can see that the proposed method
B-ENAS can learn the network architecture with
different cost constraints as BSN does. Besides the
cost that can be known before training the sampled
child model, e.g., the inference time and the memory
consumption, B-ENAS can also optimize the cost
that can only be known after training the sampled
child model like the training time.
 Consider the cells corresponding to the two models
with 1.96 millions and 3.36 millions parameters in
the experiments of the memory consumption, as
shown in Fig. 6 and Fig. 7, respectively. The cell
architecture is simple when the upper bound of the
cost is low and is more complicated when the upper
bound is higher, which is in line with intuition.
 Although B-ENAS has achieved good results in
the current experiments, it still has many things to
improve:
 (1) Because of limited computing resources and
time, many important experiments have not been
carried out. We have only performed experiments
on the CIFAR10 dataset and further experiments can

be performed on other datasets such as CIFAR100,
SVHN and MNIST. We only experimented with
one form of penalty function, and we can further
experiment with other forms of penalty function. The
search space does not differ too much from ENAS.
If the computing resources are sufficient, the search
space can be further expanded to make the sampled
network architecture more complicated.

 Fig. 7 Cell for model of 3.36 millions parameters

 Fig. 6 Cell for model of 1.96 millions parameters

许  强，等：一种基于强化学习的限定代价下卷积神经网结构自动化设计方法3 期 53

 (2) The search space has to be decided manually.
The search space has a decisive influence on the
result of B-ENAS. If the definition of the search
space is unreasonable, so there is no network
architecture can satisfy the cost constraint in the
search space, then the final result of B-ENAS
is certainly not ideal. Therefore, in practical
applications, we need to define the search space
carefully according to specific problems. This is also
a common problem of current neural architecture
search methods.
 (3) The same as BSN, B-ENAS is also soft
constrained, that is, it is not theoretically guaranteed
to be able to search for a network architecture that
satisfies the cost constraint.

6 Conclusion

In this paper we propose a method B-ENAS to
handle the neural architecture search problem with
budgeted cost constraints. Especially, to be able to
optimize more types of cost than current method
BSN. B-ENAS is inspired by current reinforcement
learning based neural architecture search method
ENAS. The basic idea of B-ENAS is to use
different types of cost to penalize the reward so as
to make the agent select network architectures that
satisfy certain cost constraints. The effectiveness of
B-ENAS is verified in experiments on the memory
consumption, the inference time and the training
time. B-ENAS optimizes these types of cost in the
network architecture search process. As mentioned
before, the network compression methods do such
optimization in a posterior way. Therefore, it is
quite interesting to study the combination of the
NAS-like methods and the network compression

methods in the future.

References

[1] Zoph B, Le QV. Neural architecture search with
reinforcement learning [C] // The International
Conference on Learning Representations (ICLR),
2017.

[2] Zoph B, Vasudevan V, Shlens J, et al. Learning
transferable architectures for scalable image
recognition [C] // The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2018.

[3] Pham H, Guan MY, Zoph B, et al. Efficient neural
architecture search via parameter sharing [C] //
The International Conference on Machine Learning
(ICML), 2018.

[4] Real E, Moore S, Selle A, et al. Large-scale
evolu t ion of image c lass i f ie rs [C] / / The
International Conference on Machine Learning
(ICML), 2017.

[5] Real E, Aggarwal A, Huang YP, et al. Regularized
evolution for image classifier architecture search
[C] // The Thirty-Third AAAI Conference on
Artificial Intelligence, 2018.

[6] Suganuma M, Shirakawa S, Nagao T. A genetic
programming approach to designing convolutional
neural network architectures [C] // The Genetic and
Evolutionary Computation Conference (GECCO),
2017: 497-504.

[7] Veniat T, Denoyer L. Learning time/memory-
efficient deep architectures with budgeted super
networks [C] // The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018:
3492-3500.

[8] Baker B, Gupta O, Naik N, et al. Designing neural
network architectures using reinforcement learning
[C] // The International Conference on Learning
Representations (ICLR), 2017.

[9] Baker B, Gupta O, Raskar R, et al. Accelerating
neural architecture search using performance
prediction [C] // The Conference on Neural
Information Processing Systems (NIPS), 2017.

集 成 技 术 2019 年 54

[10] Brock A, Lim T, Ritchie JM, et al. SMASH:
one-shot model architecture search through
HyperNetwork [J] . a rXiv prepr in t a rXiv :
1708.05344, 2017.

[11] Jin HF, Song QQ, Hu X, et al. Neural architecture
search with network morphism [J] . arXiv:
1806.10282v2, 2018.

[12] Cai H, Chen TY, Zhang WN, et al. Efficient
architecture search by network transformation [C] //
The Association for the Advancement of Artificial
Intelligence (AAAI), 2018.

[13] Cai H, Yang JC, Zhang WN, et al. Path-level
network transformation for efficient architecture
search [C] // The International Conference on
Machine Learning (ICML), 2018.

[14] Zhong Z, Yan JJ, Wu W, et al. Practical block-wise
neural network architecture generation [C] // The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018: 2423-2332.

[15] Liu HX, Simonyan K, Vinyals O, et al. Progressive
neural architecture search [C] / / European
Conference on Computer Vision (ECCV), 2018.

[16] Saxena S, Verbeek J. Convolutional neural fabrics
[C] // The Conference on Neural Information
Processing Systems (NIPS), 2016.

[17] N e g r i n h o R , G o r d o n G . D e e p A r c h i t e c t :
automatically designing and training deep
architectures [J]. arXiv: 1704.08792, 2017.

[18] Liu CX, Zoph B, Neumann M, et al. Progressive
neural architecture search [C] // The European
Conference on Computer Vision (ECCV), 2018: 19-34.

[19] Elsken T, Metzen JH, Hutter F. Simple and efficient
architecture search for convolutional neural

networks [C] // The International Conference on
Learning Representations (ICLR), 2017.

[20] Liu HX, Simonyan K, Yang YM. DARTS:
differentiable architecture search [J]. arXiv:
1806.09055, 2018.

[21] Dong XY, Huang JS, Yang Y, et al. More is less:
a more complicated network with less inference
complexity [C] // The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2017: 5840-5848.

[22] Huang G, Chen DL, Li TH, et al. Multi-scale dense
convolutional networks for resource efficient image
classification [C] // The International Conference on
Learning Representations (ICLR), 2018.

[23] Hassibi B, Stork DG. Second order derivatives
for network pruning: optimal brain surgeon [C] //
The Conference on Neural Information Processing
Systems (NIPS), 1993.

[24] Vanhoucke V, Senior A, Mao MZ. Improving
the speed of neural networks on CPUs [C] // The
Conference on Neural Information Processing
Systems (NIPS), 2011.

[25] Han S, Mao HZ, Dally WJ. Deep compression:
compressing deep neural network with pruning,
trained quantization and huffman coding [C] //
The International Conference on Learning
Representations (ICLR), 2015.

[26] Williams RJ, Peng J. Function optimization using
connectionist reinforcement learning algorithms [J].
Connection Science, 1991, 3(3): 241-268.

[27] Williams RJ. Simple statistical gradient-following
algorithms for connectionist reinforcement learning
[J]. Machine Learning, 1992, 8(3-4): 229-256.

