第9卷 第5期	集	成	技	术	Vol. 9	No. 5
2020年9月	JOURNAL OF IN	ITEGR/	ATION	TECHNOLOGY	Sep.	. 2020

引文格式:

闫俞佰,梁嘉宁,郑伟杰,等.基于动态递归反馈型神经网络的永磁同步电机转矩观测器设计 [J].集成技术, 2020, 9(5):103-113.

Yan YB, Liang JN, Zheng WJ, et al. Design of torque observer based on dynamic recursive feedback neural network for permanent magnet synchronous motor [J]. Journal of Integration Technology, 2020, 9(5): 103-113.

基于动态递归反馈型神经网络的永磁同步电机 转矩观测器设计

闫俞佰^{1,2} 梁嘉宁¹ 郑伟杰¹ 杜帅祥^{1,2}

¹(中国科学院深圳先进技术研究院 深圳 518055) ²(桂林电子科技大学 桂林 541004)

摘 要现有永磁同步电机普遍存在算法复杂、电机参数辨识困难、电磁转矩难以通过数学模型来精确估算等问题,从而导致电机控制精度以及驱动系统的整体性能下降。该研究设计了一种基于动态递归反馈型神经网络的电机电磁转矩网络拓扑模型,使用 MATLAB/Simulink 将该神经网络封装成转矩观测器,并用于电机转矩的精确估算。实验结果显示,与传统转矩和反向传播神经网络计算方式相比,该研究所设计的转矩观测器具有更高的转矩计算精度,与反向传播神经网络算法相比具有更高的控制精度与准确性。

关键词 参数辨识;控制精度;系统性能;神经网络;转矩观测器 中图分类号 TM 313 文献标志码 A doi: 10.12146/j.issn.2095-3135.20200516001

Design of Torque Observer Based on Dynamic Recursive Feedback Neural Network for Permanent Magnet Synchronous Motor

YAN Yubai^{1,2} LIANG Jianing¹ ZHENG Weijie¹ DU Shuaixiang^{1,2}

¹(Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China) ²(Guilin University of Electronic Technology, Guilin 541004, China)

Abstract For the permanent magnet synchronous motors, the controlling algorithms are usually complex and the motor parameters identification are difficult. Since the electromagnetic torques are difficult to estimate through mathematical models, which leads to a decline in motor control accuracy and overall performance

收稿日期: 2020-05-16 修回日期: 2020-08-11

基金项目: 深圳市科技创新计划项目(JCYJ20170818164527303, JSGG20180508152228974)

作者简介: 闫俞佰,硕士,研究方向为电机驱动与嵌入式系统、软件与硬件设计、深度学习以及人工智能;梁嘉宁(通讯作者),副研究员,研 究方向为电机驱动、电力电子技术以及嵌入式系统软件、硬件设计、深度学习以及人工智能,E-mail: jn.liang@siat.ac.cn;郑伟杰,硕士研究 生,研究方向为电机驱动与嵌入式系统;杜帅祥,硕士研究生,研究方向为电机驱动与嵌入式系统。

of the drive system. In this paper, a topological model of the electromagnetic torque network of the motor was investigated based on the dynamic recursive feedback (ELMAN) neural network. At the same time, the neural network is built as a torque observer by the MATLAB / Simulink for accurate estimation of the motor

neural network is built as a torque observer by the MATLAB / Simulink for accurate estimation of the motor torque. In the experiments, traditional torque calculation method and the back propagation neural network are compared with the proposed approach. In comparison, the proposed torque observer has better performance in both torque estimation accuracy and control precision.

Keywords parameter identification; control accuracy; system performance; neural network; torque observer

1 引 言

內置式永磁同步电机 (Internal Permanent Magnet Synchronous Motor, IPMSM) 因其功率 密度高、起动转矩大、效率高、过载能力强、噪 声低以及鲁棒性强等优点,被广泛应用于机器 人、电动汽车驱动控制系统等领域中^[1-3]。但由 于 IPMSM 受到电机参数的非线性、波动性以及 运行不确定性等因素影响,导致其无法准确地实 现电机转矩的高精度控制。因此,在传统的电机 转矩控制策略中,电机电磁转矩的控制精度偏低 使系统整体的性能下降^[4-5]。

在逆变器馈电的永磁同步电机系统中,一般 通过转矩数学模型进行电机的转矩估算。但电机 参数在电机运行过程中会发生变化,且受到时效 性不高及谐波扰动因素的影响,因此通过数学模 型方法获得的电磁转矩精度不高、准确度偏低^[6]。 针对这些问题,文献[7-8]提出了一种基于最大 转矩电流比的转矩预测控制系统,并对该系统性 能进行了相关分析。但该方法所建立的数学模型 具有计算量过大、时效性不高以及算法复杂度较 高的缺陷,从而不利于实现且自适应能力不强。 同时,该方法对电机驱动系统中的硬件要求也很 高,因此大大增加了系统的成本代价^[9-10]。

随着控制理论的发展变化,一些常用的控制 理论均采用线性方法,由于永磁同步电机自身的 特性(强非线性、强耦合、多变量和时变性等)制 约,使得永磁同步电机的控制结果没有达到预期 的要求^[11-12]。因此非线性控制理论及应用的发展 为后续永磁同步电机控制精度的提高提供了很好 的研究基础,其中一些基于深度学习算法的智能 控制方法,如神经网络控制与模糊控制,则更为 有效^[13-14]。目前,对于神经网络在模型结构上的 优化、模型参数的定义以及模型训练的改进方面 还没有更深入的研究,因此为了在模型的预测精 度与泛化能力方面有更好的提高,需要利用具有 特性的神经网络来构建永磁同步电机神经网络的 控制模型^[15]。

本文设计了一种基于电机 *d-q* 轴电流以及电 机转子位置永磁同步电机的转矩观测器,得到一 种端到端的高精度的映射关系,以提高模型的准 确性。由于所建立的转矩观测器独立于电机复杂 的数学模型,从而避免了电机参数辨识不精、时 效性不高以及电流谐波等扰动因素带来的影响。 通过 Simulink 仿真模型和实验验证,本文所建 立的转矩观测器具有较高的控制精度及较好的稳 定性。

2 内置式永磁同步电机数学模型

通过永磁同步电机的数学建模对其控制策略 进行研究。一般地,永磁体位于永磁同步电机的 中心转子周围,电动机的性能主要受永磁体放置 方式的制约影响,而内置式转子结构永磁体位于 定子线圈与转轴之间的铁芯中间,这样的放置方 式使得电机产生的启动效果较好^[16]。

如图 1(a) 所示,根据永磁同步电机的内部结构,可通过电机在三相静止(*a-b-c*)坐标系下建立 三相电压模型:

$$\begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = \begin{bmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \begin{bmatrix} L & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & L \end{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} +$$

$$\psi \omega \begin{bmatrix} \sin \omega t \\ \sin(\omega t - 2\pi/3) \\ \sin(\omega t + 2\pi/3) \end{bmatrix}$$
(1)

其中, u_a 、 u_b 、 u_c 为三相坐标系下定子绕组各相 电压; i_a 、 i_b 、 i_c 为三相坐标系下定子绕组各相电 流;R为三相坐标系下各相定子绕组电阻;L为 三相坐标系下定子间自感与互感之差; ψ 为永磁 体在定子上产生的磁链最大值; ω 旋转角速度。 则各坐标系中电流的变换关系如公式(2)~(5) 所示:

$$\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix}$$
(2)
$$\begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}$$
(3)

静止坐标系与旋转坐标系的各相绕组匝数被 定义为一致,将空间相位角定义为 θ(电角度), 根据磁动势等效原则,则有:

$$\begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}$$
(4)

$$\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix}$$
(5)

其中, θ 为两相旋转坐标系与两相静止坐标系横 轴间的夹角。 同理,为了更好地观测本文所设计的网络中 电机电磁转矩随转子位置的变化情况,通过图 1 所示的坐标变换原理图将 IPMSM 电机模型转换 为同步坐标系下的等效模型^[17]。

(b)q 轴等效电路

图 1 同步旋转坐标系下的 IPMSM 等效模型

Fig. 1 IPMSM equivalent model in synchronous rotating

coordinate system

基于 *d-q* 坐标系下的 IPMSM 的 *d-q* 轴电压以及电磁转矩的数学模型如公式(6)~(8)所示^[18]:

$$u_d = L_d \frac{\mathrm{d}i_d}{\mathrm{d}t} + Ri_d - pw_e L_q i_q \tag{6}$$

$$u_q = L_q \frac{\mathrm{d}i_q}{\mathrm{d}t} + Ri_q + pw_e(\psi + L_d i_d) \tag{7}$$

$$T_e = \frac{3p}{2} \left[\psi i_q + \left(L_d - L_q \right) i_d i_q \right]$$
(8)

其中, 电机 *d-q* 轴的电压、电流、磁链分量分别 定义为 u_d 、 u_q 、 i_d 、 i_q 、 Ψ_d 、 Ψ_q ; 电机的同步电 角度定义为 ω_e ; R_s 为电机定子相电阻; L_d 、 L_q 为定子绕组在 *d-q* 轴上的电感; *p* 为电机的极对 数; ω 和 *R* 分别为电机转速、定子绕组电阻; Ψ 为电机永磁体磁链; T_e 为电机的输出转矩。根据 公式(2)~(8)可知, *q* 轴电压分别受到 *d-q* 轴的 电流影响。从上述公式可知, *d-q* 的电流可以决 定 IPMSM 的电磁转矩, IPMSM 的转矩由永磁 转矩和磁阻转矩组成,因此当 $L_d < L_q$ 时,为了 充分利用该磁阻转矩以提高 IPMSM 的带负载能力,通过采用矢量控制与 q 轴的电流控制策略可以最大限度利用 IPMSM 的磁阻转矩,其中最大的电机输出转矩可以通过使用最小的定子电流来获取^[19]。

从公式(8)可知,通过电机 d-q 轴电感、d-q 轴电流可以拟合出电机的电磁转矩 T_。但在实 际的电机控制系统中,会存在电机 d-q 轴电感、 d-q 轴电流包括谐波等扰动因素,导致通过公式 (8) 拟合出来的电机电磁转矩与真实的电磁转矩 具有一定的偏差。在传统的电机电磁转矩控制策 略中,由于无法对磁体饱和、电机参数变化以及 电流谐波等扰动因素进行建模, 故降低了逆变器 馈电的永磁同步电机控制系统中电机的控制精度 与准确性。基于近几年深度学习的迅速发展,本 文通过深度学习中的动态递归反馈型(Dynamic Recursive Feedback, ELMAN)神经网络来架构出 一种端到端的精确映射关系,实现电机电磁转矩 的精确控制。此外,本研究通过 ELMAN 神经网 络构建的电磁转矩观测器将传统的复杂数学模型 简单化,从而不必对电机磁体饱和、电机参数变 化等不确定性因素进行建模,而只需考虑输入、 输出之间的特征关系。

3 动态递归反馈型神经网络模型设计

ELMAN 神经网络结构一般分为 4 层:输入 层、隐含层、承接层和输出层。其中,输入层、 隐含层和输出层的连接类似于前馈神经网络。输 入层将信号接收后输入到下一层结构中,具有传 输信号的功能,而输出层可以为该层所接收的信 号进行加权。在隐含层结构中,通过激活函数来 为接收的信号作线性与非线性处理,当信号进入 到承接层中,该层会利用自身的记忆特性来为信 号做一步反馈处理。这种处理信号的方法会对所 输入的参数具有参考特性,从而使得该神经网络 的优化效率提高且处理参数的分析能力更强。由 于 ELMAN 在时间记忆领域碾压了传统的人工神 经网络预测算法,很好地解决了很多工程性的问 题,通过网络的不断优化后 ELMAN 变得更加强 大。该神经网络不需要计算获取数学关系就可以 通过自适应能力来学习和存贮大量的输入-输出 模式映射关系。

该算法的核心思想是它能够从内部反馈、存 储和利用记忆过去时刻输出信息,其算法模型通 过梯度下降的训练方法来寻找最优解,以提高输 出的估测精度。用该梯度值更新初始权值和偏置 值,直至损失函数取得最小值。以此来计算神经 网络中的最佳参数。

ELMAN 神经网络由 ELMAN 网络建立、 ELMAN 网络训练以及 ELMAN 网络预测组成, 其基本原理框图如图 2 所示^[20]。

Fig. 2 Diagram of ELMAN neural network^[20]

在基于 ELMAN 神经网络的电机电磁转矩网络拓扑结构中,利用网络拓扑输出电机转矩目标值与实际输出的电磁转矩之间的均方误差(MSE)作为整个网络性能优劣的评判方式。首先通过设置整个网络的均方误差期望值,将电机转矩网络拓扑的实际输出电磁转矩与期望值之间做均方误差分析。

本文所提出的用于电机转矩观测器的 ELMAN 神经网络的基本结构如图 3 所示,其网络的数学 表达式为:

$$\boldsymbol{T}_{e}(t) = g \big[w_{3} \boldsymbol{x}(t) \big] \tag{9}$$

$$\boldsymbol{x}(t) = f \lfloor w_1 \boldsymbol{x}_c(t) + w_2 \boldsymbol{u}(t) \rfloor$$
(10)

$$\boldsymbol{x}_{c}(t) = \boldsymbol{x}(t-1) \tag{11}$$

Fig. 3 Structure model of ELMAN neural network

其中, T_e 为 *m* 维输出节点向量; *x* 为 *n* 维中间层 节点单元向量; *u* 为 *r* 维输入向量; *x_e* 为 *n* 维反 馈状态向量; *w₃* 为中间层到输出层的连接权值; *w₂* 为输入层到中间层的连接权值; *w₁* 为承接层 到中间层的连接权值; *g*()为模型结构的传递函 数; *x*()为中间层输出的线性组合; *f*()为中间层 神经元的传递函数,通常采用 Sigmoid 函数^[21]。 输入层 *u*()包括: *d* 轴电流 *i_d*、*q* 轴电流 *i_q*、电 机转子位置 θ 以及电机转速 ω ; 输出层为电机 电磁转矩 T_e 。

首先,通过传统的电机电磁转矩控制实验采 集电机 *d-q* 轴电流、转子位置、电机转速以及电 机电磁转矩 5 个参数作为训练集、验证集以及测 试集。

然后,将通过电机转矩控制实验采集得到的 200 000 组输入输出数据,先对原始数据做归一 化数据预处理,再从中随机选择 160 000 组训练 数据,输入到网络拓扑的输入层,同时需要不断 地对该神经网络模型进行大量的优化训练。随后 将剩下的 40 000 组数据作为电机网络拓扑的测试 集,用于测试该网络结构的转矩拟合输出性能。 神经网络预测使用训练好的网络进行预测函数输 出,并对预测结果进行分析。

在转矩观测的 ELMAN 神经网络中,采用 Sigmoid 函数作为激励函数,定义 *f*(*x*) 如公式 (12) 所示:

$$f(x) = \frac{1}{1 + e^{-x}} \tag{12}$$

最后,通过构造均方误差函数公式(13)来评 估所构造的适用于电机转矩拟合的 ELMAN 神经 网络模型。

$$RMSE(\boldsymbol{T}_{re}) = \frac{1}{n} \sum_{i=0}^{n} (\boldsymbol{T}_{ei} - \boldsymbol{T}_{re})^{2}$$
(13)

其中, T_{ei} 为 ELMAN 网络拓扑的理想电磁转矩 T_e 的期望值; T_{re} 为实际输出的电机电磁转矩 T_e 的值;n为样本个数。

在网络拓扑当中,利用公式(14)来调整电 机电磁转矩的输入层与输出层之间的隐含层层 数 *P*。

$$P = \sqrt{A_1 + A_2} + h \tag{14}$$

其中, *A*₁、*A*₂分别为输入层和输出层的神经元个数; *h*为1~10的整数。

在本文所提出的电机转矩观测的神经网络中,如果该网络拓扑所设定的电机电磁转矩与实际输出的电磁转矩之间的均方误差达不到所设定的值,那么将理想值与实际值之间的误差通过内部反馈、存储和利用过去记忆的时刻输出。同时,使用梯度下降来搜索和调整网络拓扑中神经元之间的权值和阈值,直至通过该网络拓扑实际输出的电磁转矩 *T_e* 与期望值的均方误差在设定值之内。

4 基于动态递归反馈型神经网络的转矩 观测器设计

基于上述电机控制系统,对该永磁同步电机 控制的神经网络进行建模。其中,确定隐含层神 经元个数为 300。本文所提出的基于 ELMAN 神 经网络的转矩拟合网络拓扑通过改变学习率、隐 藏层的数量、隐藏层神经元的数量以及各种神经 网络模型的优化训练算法来获得。从表 1 可以看 出,当神经元的数量上升时,训练集中的均方误

Table 1 ELMAN parameter settings of neural network					
隐藏层节点	训练时间 (s)	训练批次	学习率	均方误差	准确率(%)
60	2 414.3	1 000	0.1	0.002 31	85.2
60	2 802.7	2 000	0.01	0.000 86	92.3
200	4 622.5	1 500	0.001	0.000 65	94.8
200	6 125.8	3 000	0.01	0.000 56	96.4
300	6 835.3	3 000	0.001	0.000 42	95.9

4 0 0 0

4 000

表1 ELMAN 神经网络参数设置

差在持续稳定地收敛下降,但训练时间会上升。 选择不同的训练批次和学习率也会影响网络的性能。实验结果显示,当神经网络的隐藏层神经元 为 300、隐藏层的层数为 3 层、训练迭代次数为 4 000、每组的训练数据为 10 个、学习率为 0.001 时,均方误差达到最小值 0.000 16,准确率为 98.7%。

5 251.9

6 513.6

神经网络模型通过训练收敛后,总数据集为 200 000 个,其中训练数据 160 000 个,测试数据 40 000 个。接下来,在测试集中抽取 30 000 个样 本,对神经网络模型进行验证,得到各样本的模 型预测值相对误差曲线如图 4 所示。从图 4 可以 发现,ELMAN 网络比反向传播网络的收敛误差 更小。最终,该神经网络在测试集中的误差结果 显示,ELMAN 模型观测到的转矩误差明显比真 实转矩误差量要小,最大相对误差不超过+3%。 这表明所构建的神经网络模型具有良好的预测能 力和泛化能力。

0.01

0.001

将本文所提出来的适用于电机电磁转矩 *T_e* 拟合的 ELMAN 神经网络封装成 Matlab/ Simulink 模块。然后用该模块取代传统的转矩数 学模型来构造整体的电机转矩控制系统框图。将 转矩观测器带入到传统的磁场定向控制策略,即 磁场定向控制(FOC)系统进行仿真与试验。其整 体的逆变器馈电的永磁同步电机原理框图如图 5 所示。

0.000 37

0.000 16

在图 5 的电机控制系统中, d 轴参考电流 为 0。给定电机电磁转矩参考值, 通过比例积 分 (PI)控制器来输出 q 轴参考电流。然后根据 ELMAN 网络建立的转矩观测器实时检测电机的 d-q 轴电流信号、电机的电角度以及转子位置来 观测电机的电磁转矩。最后,将观测到的电机电 磁 T_e 与电机电磁转矩参考转矩之间的误差值进 行 PI 调节, 从而实现电机电磁转矩控制系统的

图 4 两种神经网络模型的收敛对比效果

Fig. 4 Contrast effect of convergence of two neural network models

300

300

97.2

98.7

图 5 基于转矩观测器的电机控制系统

Fig. 5 Motor control system based on torque observer

表 2 ELMAN 神经网络与反向传播神经网络的预测结果对比

Table 2 Comparison of prediction results of ELMAN neural network and back propagation neural network

网络类型	网络结构层数	训练批次	训练时间(s)	学习率	均方误差	准确率(%)
反向传播	8	1 000	6 013.6	0.01	0.002 38	92.6
ELMAN	8	2 000	4 352.8	0.01	0.000 16	98.7

闭环控制。

在同等条件(包括训练数据集、网络结构层数、学习率等)下,将 ELMAN 神经网络与反向传播神经网络通过训练调优。当两种神经网络的预测模型达到最优化时,通过对比发现, ELMAN 神经网络比反向传播神经网络的训练速度快且准确率高,其中,ELMAN 神经网络的准确 确率达到 98.7%,而反向传播神经网络的准确 率仅为 92.6%,且神经网络的训练速度较慢, 具体如表 2 所示。因此,在数据样本集相同的 条件下,ELMAN 神经网络的预测效果与泛化能 力更好。

5 转矩观测器实验验证

为了验证所提出算法的正确性,本文通过 图 6 所示的实验平台进行基于 ELMAN 神经网 络的永磁同步电机转矩观测器的可行性与准确 性研究。

Fig. 6 Platform of motor experiment

将传统的磁场定向转矩控制策略进行实验数 据分析与对比。电机实验平台包括驱动板、转矩 观测仪、内置式永磁同步电机、dSPACE 实时仿 真系统、伺服电机以及电源,其电机实验的相关 参数如表 3 所示。

为了验证本文所提出基于 ELMAN 神经网络的转矩观测器在不同工况下的转矩输出效果,通过改变电机的 q 轴参考电流来观测不同条件下的

5 期

Table 3	Simulation	parameters of	motor model
---------	------------	---------------	-------------

参数	数值
极对数	3
定子电阻	51.2 mΩ
额定电流	6 A
直流电压	120 V
额定转速	1 500 r/min
额定功率	500 W

效果,并与反向传播神经网络转矩输出预测和电机在传统电机控制技术下的实际输出转矩 *T*_{re}进行对比分析。具体结果如图 7 所示。

图 7 不同工况下的两种神经网络转矩观测器输出转矩

Fig. 7 Output torque of observer under different operating

conditions

控制电机运行在不同的工况下,采集电机在 本文所提出的基于 ELMAN 神经网络、反向传播 神经网络的永磁同步电机转矩观测器的控制系统 中的电磁转矩 T_{est} ,并与传统控制策略控制下的 电磁转矩 T_e 作对比分析。电机在初始时刻 t=1.5s 启动时, d、q 轴的电流都为0A, 空载的工况1 下,不同神经网络观测器输出的电磁转矩 T_{est} 与 实际的电磁转矩 T_{re} 如图 8 所示。

working condition 1

当 t=7.5 s 时, $i_d=0$ A、 $i_q=1$ A, 负载转 矩为 1 N·m 的工况 2 下,不同神经网络观测器输 出的电磁转矩 T_{est} 与实际的电磁转矩 T_{re} 如图 9 所示。

图 9 工况 2 下的电磁转矩与实际转矩

working condition 2

当 t=14.5 s 时, $i_d=0$ A、 $i_q=2$ A, 负载转 矩为 2 N·m 的工况 3 下,不同神经网络观测器输 出的电磁转矩 T_{est} 与实际的电磁转矩 T_{re} 如图 10 所示。

图 10 工况 3 下的电磁转矩与实际转矩

Fig. 10 Electromagnetic torque and actual torque under

working condition 3

当 t=20.5 s 时, $i_d=0$ A、 $i_q=3$ A, 负载转 矩为 3 N·m 的工况 4 下, 不同神经网络观测器输 出的电磁转矩 T_{est} 与实际的电磁转矩 T_{re} 如图 11 所示。

Fig. 11 Electromagnetic torque and actual torque under

working condition 4

当 t=25.5 s 时, $i_d=0$ A、 $i_q=4$ A, 负载转 矩为 4 N·m 的工况 5 下, 不同神经网络观测器输 出的电磁转矩 T_{est} 与实际的电磁转矩 T_{re} 如图 12 所示。

图 12 工况 5 下的电磁转矩与实际转矩

working condition 5

当 t=32.5 s 时, $i_d=0$ A、 $i_q=5$ A, 负载转 矩为 5 N·m 的工况 6 下, 不同神经网络观测器输 出的电磁转矩 T_{est} 与实际的电磁转矩 T_{re} 如图 13 所示。

Fig. 13 Electromagnetic torque and actual torque under

working condition 6

当 t=38.5 s 时, $i_d=0$ A、 $i_q=6$ A, 负载转 矩为 6 N·m 的工况 7 下, 不同神经网络观测器输 出的电磁转矩 T_{est} 与实际的电磁转矩 T_{re} 如图 14 所示。

working condition 7

实验结果表明,与反向传播神经网络控制策略相比,所提出的 ELMAN 神经网络转矩观测控制策略拟合效果更好、转矩控制精度更高。在不同工况下,ELMAN 神经网路控制策略仍保持较好的稳定性。

6 讨论与分析

在永磁同步电机系统控制策略中,一般通 过转矩数学模型进行电机的转矩估算。但电机 参数在电机运行过程中会发生非线性变化,且 受到时效性不高及谐波扰动因素的影响,因此 通过数学模型方法获得的电磁转矩精度不高、 准确度偏低^[6]。虽然也有研究^[7-8]对相应模型进 行了优化分析,但所建立的数学模型仍存在计算 量过大、时效性不高以及算法复杂度较高的缺 陷,从而不利于实现且自适应能力不强。本文设 计了一种基于电机 *d-q* 轴电流和电机转子位置永 磁同步电机的转矩观测器,得到一种端到端的高 精度映射关系。由于所建立的转矩观测器独立于 电机复杂的数学模型,从而避免了电机参数辨识 不精、时效性不高以及电流谐波等扰动因素带来 的影响。

针对电机转矩观测器,常用卡尔曼滤波器和 反向传播神经网络模型两种方法来对转矩进行估 计。卡尔曼滤波器需要对非线性电机模型的线性 化和变参数近似表示成常参数等处理方式,大 大降低转矩估计的精度^[22-23]。反向传播神经网络 模型是一种按误差反向传播训练的多层前馈网 络^[24]。它收敛速度慢和容易陷入局部极小值, 影响转矩估计的精度。数据驱动的 ELMAN 神 经网络建模可以减少传统建模的复杂性,而且考 虑了磁场非线性饱和带来的复杂因素,获得较 高精度的电机实时转矩。在同等条件,将本文 方法与反向传播神经网络模型进行预测对比发 现,本文 ELMAN 神经网络的训练速度较快且 准确率较高,其中,ELMAN 神经网络的准确率 达到 98.7%,而反向传播神经网络的准确率仅为 92.6%,这表明 ELMAN 神经网络的预测效果与 泛化能力更好。

7 结 论

为提高转矩数学模型的预测精度和泛化能 力,本文设计了一种基于电机 *d-q* 轴电流以及电 机转子位置永磁同步电机转矩观测器,得到一种 端到端的高精度的映射关系,以提高模型的准确 性。实验结果显示,本文所提出的基于 ELMAN 神经网络的永磁同步电机转矩观测器具有与传统 转矩控制策略相同的转矩控制精度。同时相比于 反向传播神经网络模型,ELMAN 神经网络算法 拟合效果更好、鲁棒性更强。在电机参考转矩发 生改变时,具有快速的瞬态响应以及稳态性能, 可以提高电机电磁转矩的控制精度。

参考文献

- [1] 史婷娜,张维,肖萌,等.基于矢量作用时间的永磁同步电机预测电流控制 [J].电工技术学报,2017,32(19):1-10.
- [2] Sakunthala S, Kiranmayi R, Mandadi PN. A study on industrial motor drives: comparison and applications of PMSM and BLDC motor drives [C] // 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, 2017: 537-540.
- [3] 王高林,李卓敏, 詹瀚林,等. 考虑逆变器非线性的内置式永磁同步电机转子位置锁相环观测器
 [J]. 电工技术学报, 2014, 29(3): 172-179.
- [4] Liao W, Su M. Direct torque control of induction machines based on predictive control [C] // Proceedings of the 29th Chinese Control Conference, 2010: 3295-3300.
- [5] Jin L, Wang F, Yang QX. Performance analysis and

optimization of permanent magnet synchronous motor based on deep learning [C] // 2017 20th International Conference on Electrical Machines and Systems, 2017: 1-5.

- [6] Liu Q, Hameyer K. Torque ripple minimization for direct torque control of PMSM with modified FCSMPC [J]. IEEE Transactions on Industry Applications, 2016, 52(6): 4855-4864.
- [7] 牛峰, 韩振铎, 黄晓艳, 等. 永磁同步电机模型预测磁链控制 [J]. 电机与控制学报, 2019, 23(3): 34-41.
- [8] Xu JX, Panda SK, Pan YJ, et al. A modular control scheme for PMSM speed control with pulsating torque minimization [J]. IEEE Transactions on Industrial Electronics, 2004, 51(3): 526-536.
- [9] 潘峰, 闫庚龙, 苑伟华, 等. 基于双滑模的永磁同步电机直接转矩控制 [J]. 电工技术学报, 2018, 33(S2): 427-433.
- [10] Han J, Choi D, Hong S, et al. Motor fault diagnosis using CNN based deep learning algorithm considering motor rotating speed [C] // 2019
 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), 2019: 440-445.
- [11] 曾春艳,叶佳翔,王志锋,等.深度学习框架下压 缩感知重建算法综述 [J]. 计算机工程与应用, 2019: 1-11.
- [12] Dierks T, Jaganna TS. Output feedback control of a quad rotor UAV using neural networks [J]. IEEE Transactions on Neural Networks, 2010, 21(1): 50-66.
- [13] Graves A, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
- [14] Du ZH, Chen XF, Zhang H, et al. Sparse feature identification based on union of redundant dictionnarty for wind turbine gearbox fault [J].
 IEEE Transactions on Industrial Electronics, 2015.

- [15] 徐艳平,张保程,周钦. 永磁同步电机双矢量模型
 预测电流控制 [J]. 电工技术学报, 2017, 32(20):
 222-230.
- [16] Bu N, Yang G, Zhao H. Prediction of concrete carbonization depth based on DE-BP neural network [C] // 2009 Third International Symposium on Intelligent Information Technology Application, 2009: 240-243.
- [17] 厉亚强,张文涛,李涉川.基于 ELM 实现的
 IPMSM 转矩观测器 [J]. 微特电机, 2019, 47(5):
 50-54.
- [18] 金亮, 王飞, 杨庆新, 等. 永磁同步电机性能分析 的典型深度学习模型与训练方法 [J]. 电工技术学 报, 2018, 33(S1): 41-48.
- [19] 耿建平, 闫俞佰, 熊光阳, 等. 基于 BP 神经网络的 永磁同步电机转矩观测器设计 [J]. 电机与控制应 用, 2020(1): 78-83.

- [20] Yan YB, Liang JN, Sun TF, et al. Torque estimation and control of PMSM based on deep learning [C] // 2019 22nd International Conference on Electrical Machines and Systems, 2019: 1-6.
- [21] 颜学龙,谢刚,孙天夫,等.基于模型预测控制的 永磁同步电机电流控制技术综述 [J].电机与控制 应用,2019,46(9):1-11.
- [22] 唐文秀, 吴俊英, 许李尚, 等. 优化 EKF 算法的永 磁同步电机参数估算 [J]. 电气传动, 2019, 49(12): 88-93.
- [23] Douiri MR, Cherkaoui M. Induction motor drive's parameters identification using extended Kalman filter algorithms [J]. Wseas Transactions on Circuits & Systems, 2014, 13: 29-36.
- [24] 李海侠,林继灿,唐海洋.基于 BP 神经网络永磁
 同步电机矢量复合控制 [J].现代电子技术, 2019, 42(11): 104-112.

113