第 13 卷 第 6 期	集	成	技	术	Vol. 13	No. 6
2024年11月	JOURNAL OF	INTEGRA	TION	TECHNOLOGY	Nov.	. 2024

引文格式:

欧阳杰, 冯松, 后林军, 等. 近红外波段光电探测器的研究进展 [J]. 集成技术, 2024, 13(6): 90-108. Ouvang J, Feng S, Hou LJ, et al. Research progress of near-infrared band photodetectors [J]. Journal of Integration Technology, 2024, 13(6): 90-108.

近红外波段光电探测器的研究进展

欧阳杰 冯 松* 后林军 郭少凯 李浩杰 胡祥建 王 油 陈梦林 刘 勇 冯露露

(西安工程大学理学院 西安 710048)

要 硅基、石墨烯、碲化合物、过渡金属二卤代化合物和钙钛矿等新型材料具有独特的结构和性 摘 质,是制备低功耗、高性能光电探测器的重要材料。作者主要综述了基于 PN、PiN 异质结结构的硅基 近红外光电探测器的研究进展,以及基于二维材料,如石墨烯、碲化合物、过渡金属二卤代化合物和 钙钛矿材料的近红外光电探测器的最新研究进展,并对相关的近红外光电探测器的性能参数进行了对 比分析,可为后续研究高性能近红外光电探测器提供思路和参考。

关键词 光电探测器;近红外光;硅基;二维材料;钙钛矿 中图分类号 TN362 文献标志码 A doi: 10.12146/j.issn.2095-3135.20230606002

Research Progress of Near-Infrared Band Photodetectors

OUYANG Jie FENG Song^{*} HOU Linjun GUO Shaokai LI Haojie HU Xiangjian WANG Di CHEN Menglin LIU Yong FENG Lulu

> (School of Science, Xi'an Polytechnic University, Xi'an 710048, China) *Corresponding Author: fengsong@xpu.edu.cn

Abstract Novel materials such as silicon-based, graphene, tellurium compounds, transition metal dihalogenated compounds and perovskites have unique structures and properties, and are important materials for the preparation of low-power and high-performance photodetectors. In this paper, silicon-based structures based on PN and PiN heterojunction structures are reviewed research progress of near-infrared photodetectors, as well as the latest research progress of near-infrared photodetectors based on two-dimensional materials, such

收稿日期: 2023-06-06 修回日期: 2023-10-20

基金项目:国家重点研发计划项目(2018YFB2200500);国家自然科学基金项目(61204080);国家重点实验室基金项目(SKL201804);陕西省重 点研发计划项目(2022GY-012,2020KW-011); 西安市科技计划项目(2020KJRC0026)

作者简介:欧阳杰,硕士研究生,研究方向为硅基光子器件; 冯松(通讯作者),教授,研究方向为硅基光子器件及集成, E-mail: fengsong@ xpu.edu.cn; 后林军,硕士研究生,研究方向为硅基光子器件; 郭少凯,硕士研究生,研究方向为数字集成电路 GPU 设计与验证; 李浩杰,硕 士研究生,研究方向为硅基探测器;胡祥建,硕士研究生,研究方向为中红外硅基光子调制器;王迪,硕士研究生,研究方向为硅基光子器 件:陈梦林,硕士研究生,研究方向为中红外无源波导器件;刘勇,硕士研究生,研究方向为硅基波导器件;冯露露,硕士研究生,研究方向 为硅基电光调制器。

as graphene, tellurium compounds, transition metal dihalogenated compounds and perovskite materials, and compare and analyze the performance parameters of related near-infrared photodetectors, which can provide ideas and references for the follow-up research of high-performance near-infrared photodetectors.

Keywords photodetectors; near-infrared light; silicon-based; two-dimensional materials; perovskite **Funding** This work is supported by National Key Research and Development Program(2018YFB2200500); National Natural Science Foundation of China (61204080); State Key Laboratory Fund(SKL201804); Key Research and Development Program of Shanxi Province(2022GY-012,2020KW-011); Science and Technology Plan Project of Xi'an (2020KJRC0026)

1 引 言

光电探测器是一种可以将光信号转换为电信 号的装置。高性能光电探测器在光电显示器、环 境监测、光通信、军事、安全检查等方面都发 挥着重要作用^[1-2]。根据探测波长,红外光电探 测器可分为近红外光电探测器(0.75~3 μm)、中 红外光电探测器(3~15 μm)和远红外光电探测 器(15~1000 µm)^[3]。光通信波段的信号强度较 低,需要探测器具备高灵敏度,并能够有效捕 捉和检测微弱的光信号。而近红外波段光电探测 器符合此要求,同时也能迅速接收和处理传输数 据信号。基于传统半导体材料的光电探测器功耗 大、成本高、性能差。2019年,钱广等^[4]研制了 一种磷化铟(InP)光电探测器,但在1550 nm的 激光照射下, 响应率仅 0.3 A/W。2021 年, 韩孟 序等^[5]提出一种砷化镓铟/磷化铟(InGaAs/InP)台 面型 PiN 光电探测器,但在波长为 1 310 nm 的 激光照射下,响应率仅 0.75 A/W。这些光电探测 器在近红外波段的响应率和探测率极低,限制了 探测器的应用领域,因此,研究新材料光电探测 器成为必要趋势。

在研究基于新型材料的光电探测器时, 硅基 材料、二维材料和钙钛矿材料最具吸引力。这些 材料不仅为光电探测器的设计提供了可能, 还使 得研发出具有高响应率、高灵敏度、低成本、可 柔性、重量轻和可调节的光电探测器成为可能, 从而极大地拓宽了光电探测器在电子产品领域的 应用范围。特别地, 硅基光电探测器因成本较低 而受到了广泛的研究和应用。此外,利用成熟的 互补金属氧化物半导体制造工艺, 硅基光电探测 器已成功集成到单片电路中^[6-7],显著提升了集 成度与性能。进一步地,绝缘体上硅(silicon-oninsulator, SOI) 技术凭借漏电流低、寄生电容小 等独特的优势,为先进的硅光子学提供了一个强 有力的通用平台^[8]。光电探测器可利用 SOI 波导 的有效折射率和损耗特性^[9-10],对其性能进行优 化。基于二维材料的光电探测器具有超高光响 应、超宽探测波段和超灵敏度等优点,取得了 许多令人瞩目的成就,引起科研人员巨大的研 究兴趣^[11]。由于钙钛矿的电学特性和光学特性 优异,在非真空条件下的合成工艺简单、成本 低^[12-13],因此,钙钛矿材料成为光电应用领域中 较有前途的材料。

经过长时间的探索研究,近红外光电探测器 在材料与器件结构等方面取得显著成就。本文综 述了基于多样化材料和新颖结构设计的近红外光 电探测器的研究进展。首先,开篇聚焦于硅基光 电探测器,特别是采用 PN 异质结和 PiN 异质结 结构的最新研究成果;其次,转向探索二维材料 和钙钛矿材料在近红外探测领域的独特优势和进展;最后,展望了融合硅基结构及上述两种材料 的近红外光电探测器在通信波段器件中的潜在应 用及未来面临的关键挑战与机遇。

2 硅基光电探测器

硅基材料的空穴迁移率好、禁带宽度小,有 助于提升器件的能效和性能,已成为发展低电压 器件的理想选择。硅基光电探测器具有制造成本 低廉、易于集成和制造大规模芯片、响应速度 快、噪声低、灵敏度高等优点,在通信、光学仪 器、医疗和军事等领域得到广泛应用。此外,硅 基异质结光电探测器具有独特的结构特性,在光 电子学应用中占据了较广泛的地位,这进一步强 化了硅基光电探测器在多个关键领域的核心竞争 力。本章分别论述了基于 PN 异质结和 PiN 异质 结的光电探测器的研究进展。

2.1 基于 PN 异质结的光电探测器

由于 PN 异质结的光电转换特性较好,因 此,光电探测器通常基于 PN 异质结实现。当光 照射在 PN 异质结上时,会激发出电子和空穴 对,并增加 PN 异质结的载流子浓度,因此可实 现光信号到电信号的转换,从而实现探测器的 功能。此外,PN 异质结对不同波长的光辐射响 应不同。当光子能量与 PN 异质结禁带宽度相当 时,就会发生光电效应,使得 PN 异质结中的导 电电子和空穴被释放出来,因此,PN 异质结会 流过一个可测量的电流。通过选择适当的材料和 工艺参数构造 PN 异质结,可对不同波段的光信 号进行高灵敏度和选通性的检测。此外,PN 异 质结还具有快速响应、低噪声、易于制造等优 点,因此,硅基 PN 异质结光电探测器在近红外 波段得到广泛应用。

为使硅基光电探测器的探测波长变宽、响应率变高,2017年,Dhyani等^[14]提出一种基

于二硫化钼/硅 (N-MoS₂/P-Si) 异质结的光电探测 器。如图 1 所示,该光电探测器在激光波长为 550 nm、偏置电压为 5 V 的条件下,响应率高达 9 A/W,比探测率高达 10¹⁴ Jones (1 Jones = 1 cm·Hz^{1/2}·W⁻¹)。该器件的响应上升时间为 9 μ s, 下降时间为 7 μ s,可在高频 50 kHz 下工作。高 的界面势垒可有效增强电荷分离效率和光捕获性 能,使得更多光子能被转化为电信号,从而使多 孔硅上异质结结构的光探测性能较好,进而显著 提高器件的响应率。

图 1 N-MoS₂/P-Si 异质结器件结构

Fig. 1 Structure of N-MoS₂/P-Si heterojunction device

2019 年, Chauhan 等^[15]提出一种基于二 氧化钛/硅(N-TiO₂/P-Si)异质结结构的光电二极 管。如图 2 所示,该光电二极管在入射光波长 为 620 nm、功率为 1 mW/cm² 的条件下,响应率 高达 23.07 A/W,比探测率高达 4.5×10¹² Jones。 光电探测器的内部增益、响应率、检测率和灵敏

Fig. 2 Cross-sectional of N-TiO₂/P-Si heterojunction

device structure

度等参数的提高主要得益于二氧化钛与硅形成同 型异质结,二氧化钛纳米晶体导致的隧穿长度减 少,产生和转移的电荷增加。

上述两种探测器利用材料和结构的优势使其 响应率得到较高的提升,然而也有较明显的缺 点,如探测波长太小而限制应用范围。为提高 探测波长,2020年,Xu等^[16]提出一种基于硫化 铅/硅(P-PbS/N-Si)异质结的光电探测器。如图 3 所示,该探测器呈倒置结构,与普通结构相比, 它的能带偏移量较低,为器件提供了更高的电荷 提取效率。在硅晶片表面钝化和硅掺杂密度优化 下,当入射光的波长为1540nm、偏置电压为0V 时,该器件的响应率高达 264 mA/W,比探测率 高达 1.47×10¹¹ Jones,响应速度高达 29.8 kHz, 上升时间为 2.04 µs,下降时间为 5.34 µs。

Fig. 3 Cross-sectional of P-PbS/N-Si heterojunction device structure

上述基于硅基 PN 异质结的光电探测器可将 探测波段增至1540 nm,并可通过器件优化降低 暗电流,从而使器件有更高的比探测率。但是, 由于硅材料的量子效率较低,仅能将一部分入射 光子转化为电子,因此限制了上述光电探测器的 响应率。此外,硅材料具有一定的温度敏感性, 相关光电探测器的性能可能会因环境的影响而使 其应用范围发生变化,但通过合理的材料结合和 精妙的器件结构优化,未来的硅基 PN 异质结光 电探测器的性能将更好。

2.2 基于 PiN 异质结的光电探测器

PiN 异质结是一种具有高电荷载流子收集率 和低噪声系数的半导体器件结构,具有快速的响 应时间和较高的探测效率。因此,光电探测器通 常利用 PiN 异质结增加探测器对光信号的响应 度。此外, PiN 异质结在工作过程中几乎没有反 向饱和电流噪声,所以电荷载流子不会产生重复 噪声源。这使得基于 PiN 异质结的光电探测器 具有较低的噪声系数,并能够检测非常小的光信 号。因此可利用 PiN 结构的优势提高探测器的响 应率和探测波长。2015 年, Li 等^[17]提出一种与 绝缘体上硅和互补金属氧化物半导体技术兼容的 横向 PiN 光电二极管,如图 4 所示,该器件在 10 V 的偏置电压下获得了 12.6 GHz 的带宽,在波 长为 850 nm 的光照下, 响应率高达 7.5 mA/W。 在相同的测试条件下,即 10 V 的偏置电压和波 长为 850 nm 的光照, 当光电探测器的衬底尺寸 被缩小后,其带宽性能得到了显著提升,达到了 13.6 GHz, 与原器件的 12.6 GHz 带宽相比, 有了 明显提高,且光电探测器的电容低于 65 fF。

虽然上述光电二极管的带宽较高,但探测波 长和响应率偏低。因此,为提高 PiN 结构光电探 测器的探测波长和响应率,某些团队利用不同材 料制作 PiN 结构探测器。2016 年, Chen 等^[18]提 出一种硅锗 PiN 光电探测器。如图 5 所示,当该 探测器结构的长度为 14 µm 时,在照射光波长 为 1 550 nm、偏置电压为 1 V 的条件下,响应 率高达 0.74 A/W,暗电流低至 4 nA。处于该长 度的探测器仍受传输时间限制,当将探测器结构 长度调整至 20 µm 时,其响应率得到提高,在 1 550 nm 的照射光下,响应率高达 0.92 A/W。

(b) 光电探测器截面图

2018年,Li等^[19]提出一种石墨烯-硅 PiN 光电 二极管,如图 6 所示,该器件实现了可见、近红 外、零偏压光电检测。当照射光波长为1550 nm、 偏置电压为 0 时,器件的响应时间为 15 ps,光 电信号进行转化,信噪比高达 52.9 dB。主要原 因是石墨烯材料中的载流子流动速度快和内置电 场的有效嵌入共同提升了器件在光电信号转换过 程中的性能。

2020 年, Aliane 等^[20]提出一种直径为 10 μm 的圆形锗 PiN 光电二极管。如图 7 所示,该器件 处于低温条件下(LT)在硅衬底上外延生长锗, 通过掺杂硼在生长 P 型锗层,然后在高温条件下 (HT)生长本征锗层,形成垂直 PiN 光电二极管, 利用椭圆偏振光谱、X 射线衍射和拉曼光谱量化 锗层中存在的拉伸应变。这种内置的拉伸应变改 变了器件对光的吸收特性,不仅提升了器件的光 捕获能力,还将探测波段有效扩展至 1 700 nm。 当照射光的波长分别为 1 310 nm 和 1 550 nm 时, 器件响应率分别为 0.275 A/W 和 0.133 A/W,内 部量子效率分别为 66% 和 52%。

Fig. 7 Structure of germanium PiN photodiode

上述探测器通过合理利用 PiN 异质结的特性, 使硅基光电探测器的探测波段增至1700 nm,

并使响应度得到一定提高。由此可知,基于 PiN 异质结是光电探测器优化的一个基本策略,有望 在中红外波段得到应用。

为进一步了解硅基光电探测器,本文列出了 近年来性能较好的基于 PN、PiN 和其他异质结 结构的硅基光电探测器的性能参数,并进行了对 比分析,如表1所示。

由表 1 可知, 硅基光电探测器的结构有多种, 而与其他异质结光电探测器相比, 基于PN、PiN 结构的光电探测器的性能较优,本文主要对比分析基于 PN、PiN 结构的光电探测器。 Xu 等^[16]提出一种基于 PN 异质结的光电探测器,与传统 PN 异质结光电探测器相比,该探测器的探测波段较宽。独特的倒置结构设计使得该光电探测器的探测范围拓宽至 1 540 nm, 这一特性在其他常规 PN 异质结光电探测器中较为罕见。与普通结构相比,这种结构的能带偏移量较低,有利于光电探测器的载流子采集,为器件提供了更高的电荷提取效率,并具有良好排列的带结构和高效的载流子分离与提取,但该探测器的响应率较低。Chauhan 等^[15]提出的 PN 异质结光

电探测器比其他 PN 异质结光电探测器的响应率 高,为23.07 A/W,主要得益于二氧化钛与硅形 成同型异质结,二氧化钛纳米晶体导致的隧穿长 度减少, 电荷产生和转移增加, 提高了响应率和 探测率。由表 1 可知,对于基于 PiN 异质结的 光电探测器在探测波段上未展现出显著的差异。 然而, 与其他 PiN 异质结光电探测器相比, Chen 等^[18]提出的光电探测器的响应率更高, 主 要得益于探测器采用了 SOI 技术,将硅器件层 和衬底分离,降低了底部漏电流的影响,从而提 高了探测器的灵敏度,减少了载流子在电极之间 的传输距离,并提升了载流子的移动速度,进而 提高了载流子的数目和收集率,综合作用之下, 显著提高了探测器的响应率。通过对比基于 PN 异质结与 PiN 异质结的两种光电探测器,本文 发现, PN 结构虽然在比探测率方面展现出一定 优势,但在探测波长范围和响应率上却相对受 限。相比之下, PiN 结构探测器则能探测更长的 波长,展现出更高的响应率,整体性能更优。这 一对比分析不仅揭示了两种结构的各自特点,还 为后续探索高性能硅基光电探测器的研发方向提

表1 近年来性能较好的硅基近红外光电探测器

Table 1	Silicon-based	l near-infrared	band	detectors	with good	l performance	in recent years

探测器类型	探测波长 (nm)	响应度 (mA/W)	比探测率 (Jones)	响应时间	参考文献
N-MoS ₂ /P-Si	550	9 000	10^{14}	16.00 µs	[14]
N-TiO ₂ /P-Si	620	23 070	4.50×10^{12}		[15]
P-PbS/N-Si	1 540	264	1.47×10^{11}	7.38 μs	[16]
PtSe ₂ /Si	808	520	3.26×10^{13}	55.30/170.50 μs	[21]
Gr/N-Si	808	456	7.96×10^{11}		[22]
MoS ₂ /Si	808	300	1013	3.00/40.00 µs	[23]
石墨烯/Si	890	730	4.08×10^{13}	320.00/750.00 µs	[24]
SnO ₂ /SiO ₂ /P-Si	365~980	285~355	1.70×10^{12}	<0.10 s	[25]
Ag/SiN _x /Si/Ag	800	1 880	3.14×10^{11}	<40.00 ms	[26]
石墨烯量子点/WSe ₂ /Si	740	707	4.51×10^{9}	0.20 ms	[27]
GeSi(P-i-N)	1 550	920			[18]
石墨烯/Si(P-i-N)	1 550	11		15.00 ps	[19]
Ge/Si(P-i-N)	1 550	133			[20]
绝缘体上的锗结构(P-i-N)	1 550	390			[28]
Si(P-i-N)	850	440			[29]

供了有价值的参考。

3 基于二维材料的光电探测器

二维材料具有独特的光学、电学和力学性 能,为众多至关重要的光电应用领域中的光电探 测器研发提供了新的机遇与可能。此外,还具有 载流子迁移率高、物质-光相互作用强、机械韧 性和栅极控制性好等优点,可应用在穿戴、便携 式高性能电子和光电器件上。基于二维材料的光 电探测器的结构独特、光电性能优良,吸引了许 多研究项目。目前为止,已经有数百个基于二维 材料的光电探测器被报道过^[11]。本章主要对基于 石墨烯、碲化合物、过渡金属硫族化合物 3 种材 料的探测器进行对比分析。

3.1 基于石墨烯材料的光电探测器

石墨烯材料的光学和电子特性较好,如高电 子迁移率、高光学透明性、高电导率等,在电子 和光电器件的开发中受到越来越多的关注,所 以,石墨烯材料是一种很好的光电应用候选材 料。由于石墨烯的载流子迁移率较高、波长吸 收范围较宽,因此通常被用来制作高性能探测 器。一些研究人员利用石墨烯优异的物理和化学 性质与其他材料结合形成不同结构,提高探测器 的探测波长和响应率。2018 年,Casalino 等^[30] 提出一种石墨烯/硅肖特基结近红外光电探测器。 如图 8 所示,在零偏置和照射光波长为 2 μm 的条件下,光电探测器在室温下的外部响应率为0.16 mA/W。

2020年,Guo等^[31]提出一种硅-石墨烯混合 等离子体波导光电探测器,该探测器引入了一个 顶部带有金属帽的硅脊核心区,如图9所示。其 中,W_m和h_m分别代表中间电极金属的宽度和厚 度;W_{si}和h_{etch}分别表示中间电极Si层的宽度和 厚度;h_{si}代表中间电极Si层与衬底Si层的总厚 度;V_G表示栅极电压;V_b表示偏置电压。这种设 计增强了石墨烯的光吸收,降低了金属的吸收损 失,极大地促进了石墨烯的有效光吸收。此外, 该设计中还引入了金属-石墨烯-金属电极结构, 降低了金属与石墨烯之间的接触电阻,进而实

Fig. 9 Structure of silicon-graphene hybrid plasma waveguide photodetector

现了更快的响应速度。当入射光波长为 1.55 μm 时,该探测器的频率响应 3 dB 带宽超过 40 GHz。 当入射光波长为 2 μm,输入功率为 0.28 mW 时,该光电探测器的响应率为 70 mA/W。

2021 年, Kim 等^[32]提出一种石墨烯/锗肖特 基结光电探测器。如图 10 所示,该结构通过在 石墨烯和锗之间插入一层较薄的氧化铝界面层, 增加低能载流子的隧穿距离,降低界面上的费米 能级钉扎效应,抑制暗电流,提高石墨烯/锗肖 特基结光电探测器的性能。通过此做法,暗电流 降低了两个数量级,当照射光波长为 1 550 nm 时,光-暗电流比高达 4.3×10⁷ W⁻¹,比探测率升 至 1.8×10¹⁰ Jones,响应率高达 1.2 A/W,比其他 锗光电探测器高 10~100 倍。

photodetector structure

上述基于石墨烯的近红外光电探测器的探测 波段长、响应速度快,得益于石墨烯优越的载流 子迁移率和零带隙的线性色散。然而,尽管具备 这些优点,但该探测器仍受响应率较低的限制, 在很多通信领域难以应用。为实现超高响应率 光电探测器,2018年,Luo等^[33]提出一种基于 单层石墨烯的、具有简单器件结构的光电探测 器。如图 11 所示,该结构将 N 型重掺杂的硅/二 氧化硅(Si/SiO₂)作为衬底,将石墨烯作为吸收光 区域。在光电探测器中,衬底有效地吸收光能, 进而产生了显著的光电流,提升了探测器的响应 率。此外,Si/SiO₂界面因弯曲效应而产生了一个 有效的电场,该电场能够高效地分离硅中由光子 激发产生的电子空穴对。这一机制进一步促进光 在重掺杂Si/SiO₂衬底中的吸收,从而使探测器 产生了额外的光电压,有效地调节了石墨烯的导 电性。室温下,当照射光波长为450 nm时,该 探测器的响应率高达500 A/W;当照射光波长为 1064 nm时,响应率高达4 A/W。

图 11 单层石墨烯光电探测器结构

Fig. 11 Structure of single-layer graphene photodetector

2020 年, Zhang 等^[34]报道了一种石墨烯/磷 化铟(Graphene/P-InP)肖特基结近红外光电探测 器。如图 12 所示,该探测器以 P-InP 半导体为 衬底, 然后通过等离子体化学气相沉积工艺在 P-InP 底物上沉积了一个 200 nm 的氮化硅(SiN_x) 分离层,之后利用离子刻蚀法刻出一个窗口,并 在窗口上生长一层 3 nm 的氧化铝钝化层。氧化

photodetector structure

铝钝化层厚度的进一步增加会阻碍载流子的转移 和分离;相反,厚度的进一步减小会增加载流子 的复合概率。因此,氧化铝钝化层优化了器件性 能。该近红外光电探测器在偏置电压为0V时, 肖特基势垒可达到0.89 eV,且在反向偏置电压 为0.4V时,对波长808 nm 近红外光的响应和比 探测率高达5.2 mA/W和1.3×10¹⁰ Jones。

2021 年,Yousefi 等^[35]提出一种在两个光通 信波段(O 波段和 U 波段)中具有高响应率的石 墨烯等离子体光电探测器。如图 13 所示,该光 电探测器在光通信领域中的 O 波段与 U 波段展 现出卓越的工作性能,其高响应率特性得益于器 件结构巧妙结合了石墨烯层和等离子体纳米结 构的双重优势。图中,h 代表 Ag 的厚度;d 为 Si₃N₄ 的厚度;w 为中间结构 Ag 的宽度;l 表示 Ag 与 Ag 之间的距离。石墨烯单层和等离子体结 构的结合可增强光-石墨烯的相互作用,从而提

综上所述,光电探测器基于石墨烯的异质结 构和杂化结构在实际应用中展现出了较高的光响 应,主要得益于石墨烯的超高载流子迁移率,该特 性使得石墨烯在光电转换过程中能迅速而有效地传 输载流子,从而显著提升了光电探测器的性能。通 过在器件结构中合理增加氧化层,可抑制暗电流, 并可提高响应率,是提高器件结构的好方法。此 外,由于石墨烯光电探测器的灵敏度较高,在光场 成像领域展现出了巨大的应用潜力,因此,可促进 热门领域智能机器人和电影产业的发展。

高光电探测器的响应率。该光电探测器在波长为

3.2 基于碲化合物的光电探测器

碲化物的灵活性较高、频率响应较好、信 噪比优异、带隙较窄、载流子迁移率较高、载 流子寿命较长,在高性能光电探测器领域被 广泛关注。为研究宽探测波长、高响应率近 红外探测器,2020年,Chen等^[36]提出了碲化 钼/锗(MoTe₂/Ge)异质结和碲化钼/二氧化锗/锗 (MoTe₂/GeO₂/Ge)异质结两种近红外光电探测 器。如图 14 所示,在915 nm 的激光照射下, MoTe₂/Ge 异质结光电探测器的响应率高达 12 460 A/W,响应时间短至 5 ms,比探测率为

Fig. 14 Schematic diagram of two molybdenum telluride structure photodetectors

3.3×10¹² Jones。由于 MoTe₂和 Ge 之间的势垒 较低,因此,MoTe₂/Ge 异质结存在较大的反向 电流。为降低反向电流,在 MoTe₂/Ge 异质结中 引入由臭氧氧化沉积的超薄二氧化锗层。MoTe₂/ GeO₂/Ge 异质结的反向电流从 0.44 μ A/ μ m² 降 至 0.03 μ A/ μ m²。在 915 nm 激光照射下,MoTe₂/ GeO₂/Ge 异质结近红外光电外探测器的响应率 为 15.6 A/W,响应时间为 5 ms,比探测率高达 4.86×10¹¹ Jones。

2022年,Song等^[37-38]提出了一种碲化锡 (SnTe)纳米膜近红外光电探测器和一种碲化锡/ 锗(SnTe/Ge)异质结近红外光电探测器。SnTe纳 米膜近红外光电探测器的结构如图 15 所示,在 400~1 050 nm 的宽光谱范围内有光电响应。在 940 nm 的近红外波段,在光功率密度为 0.2 mW/cm 的情况下,该光电探测器的比探测率和响应率分 别为 3.46×10¹¹ Jones 和 1.71 A/W。SnTe/Ge 异 质结近红外光电探测器如图 16 所示,在波长为 850 nm、光功率密度为 13.81 mW/cm² 的近红外照 明下,SnTe/n-Ge 光电探测器显示出 0.05 V 的小 开路电压,上升时间和下降时间分别为 206 ms 和 267 ms,在偏置电压为 0.5 V 时,响应率高 达 617.34 mA/W,在零偏置下,比探测率高达 2.33×10¹¹ Jones。

由于碲化物材料的信噪比和频率响应较高, 因此,上述探测器利用碲化物与锗材料形成的异

质结构提高响应率,但上述探测器的探测波长受限制,抑制其通信应用范围。为研究探测波长宽的光电探测器,2020年,Tong等^[39]提出了一种二碲化铂/硅(PtTe₂/Si)异质结近红外光电探测器。如图 17 所示,该探测器通过 PtTe₂/Si 异质结(由 PtTe₂和 Si 结合形成)制备,稳定性较好。该探测器对 200~1 650 nm 波段内的入射光均有响应。当入射光波长为 980 nm 时,基于 PtTe₂ 的光电探测器的响应度和比探测率分别为 0.406 A/W 和 3.62×10¹² Jones,量子效率高达 32.1%,上升和下降的响应时间分别为 7.51 μs 和 36.7 μs。

2023年, Shui 等^[40]提出了一种金属-半导体-金属结构近红外光电探测器。如图 18 所示,当 照射光波长为 1 550 nm 时,该探测器在室温下 的电压响应率和电流响应率分别为 3.4×10⁵ V/W 和 170 mA/W,比探测率高达 4×10⁹ Jones,偏 振二向色性比可达 2.1。此外,该探测器的工作

在研发基于碲化物材料的光电探测器时,一 个关键策略在于巧妙地利用金属与半导体材料界 面处形成的 P-N 结或肖特基结所产生的强大内嵌电 场。这一机制不仅能够有效抑制暗电流的产生,从 而显著降低噪声功率,还能大幅提升探测器的响应 效率,因此被视为构建高性能光电探测器的坚实基 石。此外,为了进一步增强材料的光吸收能力,研 究者还采取了构建人工金属微结构以及设计谐振腔 等创新手段,这些措施在提升光吸收率方面发挥着 举足轻重的作用。

3.3 基于过渡金属硫族化合物的光电探测器

二维金属硫族化合物的结构和物理性质较 好,如红外检测性能好、响应率和探测率高、工 作性稳定等,引起越来越多的关注,为红外光电 探测器开辟了新前景。为研究基于硫化物的高性 能近红外光电探测器,2018 年,Wang 等^[41]提出 一种基于二硫化钼/碲化镉(MoS₂/CdTe)PN 异质结 的光电探测器。如图 19 所示,该光电探测器在 200~1 700 nm 表现出光响应,在波长为 780 nm 的光照下,响应率高达 36.6 mA/W,比探测率高 达 6.1×10¹⁰ Jones,表明 MoS₂/CdTe PN 异质结在 室温红外检测中的潜力较大。

2020 年, Jiang 等^[42]提出一种二硫化锡/纤锌 矿(SnS₂/ZnO_{1-x}S_x)异质结光电探测器。如图 20 所

示,该探测器的探测范围覆盖了紫外到近红外波段。在波长为365 nm 的光照射下, SnS₂/ZnO_{0.7}S_{0.3} 异质结光电探测器的响应率为8.28 mA/W,比探测率为5.09×10¹⁰ Jones,开关比为1.08×10⁵, 且响应速度较快,上升时间为49.51 ms,下降时间为25.93 ms。上述优异性能得益于S元素的掺杂对氧化锌能带结构的优化。通过掺杂,氧化锌的价带最大值和导带最小值被提升,有效减少了异质结界面上载流子的复合过程,显著提升了SnS₂/ZnO_{0.7}S_{0.3}器件的整体性能。

Fig. 20 Structure of tin disulfide/wurtzite heterojunction photodetector

上述探测器虽然通过将硫化物与其他材料结合拓宽了探测范围,但其响应率较低,限制了其应用发展。为研究高响应率硫化物探测器,2020年,Kharadi等^[43]提出一种硅/二硫化钼(Si/MoS₂)异质结光电探测器。如图 21 所示,该探测器以MoS₂半导体层为光吸收层,以 Si 层为高载流子

运输路径。在波长为 650 nm 的光照下,该探测器的响应率高达 5.66×10⁵ A/W,比探测率高达 4.76×10¹⁰ Jones,在 1 V 偏置电压下,光电导增 益高达 2.5×10¹¹。由于载流子在硅中的高迁移率

减少了光电探测器的传输时间,因此,光电导增 益较高。

为提高金属硫族化合物光电探测器的性能, 可通过金属硫族化合物与其他二维材料或者半导 体材料结合形成异质结的方式,提高器件的探测 波长范围和响应率。上述方式会增加异质结面的 缺陷及晶格不匹配问题,从而限制载流子的迁移 率和瞬态响应,但可通过优化材料制备方法、界 面工程等手段优化器件性能。

为进一步了解基于各种二维材料的近红外 光电探测器的研究进展,本文列出了近年来较 为先进的近红外光电探测器,其性能参数如表 2 所示。

由表 2 可知,在基于石墨烯材料的光电探测器中,Yousefi 等^[35]所报道的光电探测器比

表 2	近年来基于二维材料较先进的近红外光电探测器

Table 2	Advanced near-infrared	photodetectors l	based on two-di	imensional mate	erials in recent years
I dole I	itu ancou nour minu ou	photodetectors,	Juseu on eno u	michoroman mare	in i ceene jeurs

探测器类型	探测波长 (nm)	响应率 (mA/W)	比探测率 (Jones)	响应时间	参考文献
石墨烯/Ge	1 550	1 200.00	1.80×10^{10}		[32]
石墨烯/P-InP	808	5.20	1.30×10^{10}		[34]
石墨烯/Si ₃ N ₄	1 675	460.00			[35]
MoTe ₂ /石墨烯/SnS ₂	405~1 550	1.17×10^{4}	1.06×10^{9}		[44]
石墨烯/MoTe2/石墨烯	473~1 064	0.20		0.07 ms	[45]
Ge/石墨烯	350~1 650	6.62×10^{4}			[46]
MoTe ₂ /Ge	915	1.24×10^{7}	3.30×10^{12}	5.00 ms	[36]
MoTe ₂ /GeO ₂ /Ge	915	1.56×10^{4}	4.86×10^{11}	5.00 ms	[36]
PtTe ₂ /Si	980	406.00	3.62×10^{12}	44.21 μs	[37]
SnTe/Ge	940	1 710.00	3.46×10^{11}		[38]
GaTe/InSe	1 550	150.00	1012	0.80 s	[47]
MoTe ₂ /Si	980	190.00	6.80×10^{13}	150.00 ns	[48]
Те	1 700	1.60×10^{4}	2.00×10^{9}		[49]
2H-MoTe ₂	1 260~1 360	400.00			[50]
MoS ₂ /CdTe	200~1 700	36.60	$6.10 imes 10^{10}$		[41]
Si/MoS ₂	650	5.66×10^{8}	4.76×10^{10}		[43]
MoS ₂ /石墨烯/GaAs	808	19.90	4.86×10^{10}	46.80/55.00 μs	[51]
MoS_2	637	3.26×10^{6}	9.00×10^{14}	480.00 μs	[52]
MoS ₂ /GaN/Si	300~1 100	23 810.00	1.18×10^{12}	1.16 ms	[53]
SnS/Si	980	1 170.00	1012	11.00/11.00 ms	[54]
SnS	1 030	190.00	9.21×10^{11}	2.00 s	[55]
石墨烯/SnS2	1 064	1 460.00	1.28×10^{10}		[56]

其他石墨烯光电探测器的探测波长范围宽,最 大探测波长能达到 1 675 nm, 原因是该探测器 利用石墨烯单层和等离子体结构的结合,增强 了光-石墨烯的相互作用,但该探测器的结构通 过调节栅极电压来调整石墨烯化学势, 随着栅 极电压的增加,石墨烯的化学势也增加,导致 石墨烯单分子层的吸收降低,从而降低了响应 率;而 Yang 等^[46]报道的石墨烯探测器的响应 率高达 66.2 A/W, 原因是器件结构中的锗和石 墨烯之间的异质结构有效阻止了器件表面和界 面上的载体组合,以及锗和石墨烯界面上的光 生载流子的有效分离和转移,从而使响应率和 导电增益都得到提高。在基于碲化物材料的光 电探测器中, Amani 等^[49]报道的光电探测器比 其他基于碲化物材料的光电探测器的探测波段 更宽, 高达 1 700 nm, 原因为该探测器结构中 的 Al₂O₃ 腔的厚度可以进行改变,从而影响器 件对光的吸收,但该探测器的比探测率较低; 而 Chen 等^[36]报道的光电探测器的响应率高达 1.24×10⁴ A/W, 比探测率高达 3.3×10¹² Jones, 原因是该探测器中的 MoTe, 和 Ge 与金属(Al 和 Pt)之间形成肖特基势垒,可以实现快速的电子 传输,提高了响应速度,但也制约少数载流子 的流动,从而减小了热噪声的影响,并提高了比 探测率。在基于金属硫族化合物的光电探测器 中, Kharadi 等^[43]提出的光电探测器比其他基于 金属硫族化合物的光电探测器的响应率高, 高达 5.66×10⁵ A/W, 原因是 Si/MoS, 异质结存在很高 的界面结合能,有助于保持良好的电子传输性能, 且 MoS, 具有较高的光吸收速率及大量的边界和缺 陷,有利于吸附目标分子和增强系统的感知能力, 因此可提高系统的响应率和探测率。综上所述,可 利用二维材料中载流子数量较少的优势,将暗电流 降至较低水平,以提高探测器的响应。但仍有一 些缺点有待克服,例如:单层石墨烯的弱光吸收特 性: 原子级薄二维材料容易受环境的影响, 特别是 窄带隙材料,在环境空气中不稳定,但是可以合理 利用二维材料的异质结构和杂化结构来优化器件性 能。因此,二维材料的应用领域较广泛,特别地, 二维材料的柔性特性对柔性和可穿戴电子领域、生 物医学、航空通信等意义重大。

4 基于钙钛矿材料的光电探测器

金属卤化物钙钛矿材料具有电子空穴扩散长 度大[57-58]、迁移率高、光伏能量转换能力好等优 点,在光电应用中得到广泛关注^[59-61]。许多基于 钙钛矿的光电探测器已被制造出来,并被用于高 灵敏度的检测。然而,在近红外探测波段中,钙 钛矿固有的光学带隙限制了光谱探测的发展。为 解决此问题,许多研究者对钙钛矿光电探测器 进行了研究。2019 年, Upadhyay 等^[62]提出了一 种基于碘化铅甲胺/铁酸铋(CH₃NH₃PbI₃/BiFeO₃) 异质结结构的近红外光电探测器。如图 22 所 示, 该钙钛矿异质结光电探测器在波长为 400~900 nm 的近红外光照射下,展现出广泛的 响应能力,而且具备双波段响应特性。这一独特 性能归因于构成异质结的两种材料——BiFeO,和 CH₃NH₃PbI₃钙钛矿各自独特的光吸收特性。在 波长为 800 nm 的激光照射下,当反向偏置电压 为 2 V 时, 该探测器的响应率高达 2 A/W, 比探

图 22 碘化铅甲胺/铁酸铋异质结光电探测器结构

Fig. 22 Structure of lead methylamine iodide/bismuth ferrite heterojunction photodetector

测率高达 7.8×10¹² Jones,响应速度也较快,上 升时间和下降时间分别为 0.740 s 和 0.088 s,核 心原因在于该探测器将 BiFeO₃ 作为滤光层和孔 阻挡层。这种设计不仅通过 BiFeO₃ 在特定光谱 区域的光吸收特性筛选和增强了所需波段的光信 号,还通过结合铟掺杂氧化锡与 BiFeO₃ 孔阻挡 层,进一步提升了探测器的响应率。

2020年, Guo 等^[63]提出一种基于碘化铅甲 胺/二硒化铜铟(CH₃NH₃PbI₃/CuInSe₃)量子点的 近红外光电探测器。如图 23 所示,该探测器以 CuInSe, 量子点/CH₃NH₃PbI, 薄膜为光活性层, 以 增强光电流、抑制暗电流。CuInSe,量子点与卤 化物钙钛矿的联合光吸收效应可提高光电转换能 力,且 CuInSe,量子点作为一种电子阻挡层,可 有效阻挡电子进入空穴输运层,因此可降低热噪 声。在波长为 580 nm 的激光照射下,优化后的 光电探测器的响应率大于 150 mA/W, 比探测率 大于 7.0×10¹² Jones; 在 850 nm 激光照射下,优 化后的光电探测器的响应率大于 20 mA/W, 比探 测率大于 7.7×10¹¹ Jones。此外, CuInSe, 量子点 层使钙钛矿的密度更大、更防水,因此可提高探 测器的环境稳定性和热稳定性, 甚至可将工作温 度扩展到 150 ℃ 以上。

图 23 碘化铅甲胺/二硒化铜铟量子点光电探测器结构

Fig. 23 Structural of lead iodide/copper indium diselenide quantum dot photodetector

上述钙钛矿探测器虽然利用材料掺杂和量 子点结构提高了探测器的探测波段,但响应率 较低,限制了该探测器的应用发展。因此,如 何提高钙钛矿探测器的响应率成为当前研究领 域的主要问题。2021 年, Asuo 等^[64]提出一种 基于碘化铅甲胺/硅纳米线(CH₃NH₃PbI₃/Silicon Nanowires, SiNW)异质结的光电探测器,可探 测紫外光、近红外光。如图 24 所示, 该探测器 的制备基于碘化物钙钛矿和 SiNW 阵列的组合。 具体而言,该制备流程首先将 N 型硅晶片作为基 底, 随后使用金属辅助镀锌蚀刻技术, 通过浸没 法制造密集垂直排列的 SiNW 阵列。然后,将硫 氰酸铅(Pb(SCN),)掺杂的钙钛矿溶液通过旋涂直 接沉积在 SiNW 上,随后,钙钛矿被转化为纳米 纤维或薄膜。在波长为 532 nm 的光照下,优化后 的 CH₃NH₃PbI₃/SiNW 异质结光电探测器的响应率 高达 13 A/W, 比探测率高达 10¹³ Jones, 上升/下 降时间为 22.2/17.6 us。

图 24 碘化铅甲胺/硅纳米线异质结光电探测器结构 Fig. 24 Structure of lead methylamine iodide/silicon nanowire heterojunction photodetector

2023 年, Yang 等^[65]提出一种银/钛酸钡/银 (Ag/BaTiS₃/Ag)光电探测器,该探测器的探测波 长范围为 365~1 550 nm,如图 25 所示。该探测 器经过适当的硫化后,表面硫空位缺陷被钝化, BaTiS₃光电探测器的暗电流被抑制。因此,该器 件的开关比和响应率较高。此外,缺陷的冻结和 晶格振动散射效应的减弱使得器件在 80 K 下的 响应速度得到了显著提高。在波长为 780 nm、 功率为 12.8 mW/cm² 的光照下,当偏置电压为 1 V 时,硫化 BaTiS₃ 器件的上升时间和下降时间分别 为 263.8 ms 和 180.5 ms。在波长为 780 nm、功率 为 16.4 μW/cm² 的光照下,该探测器的响应率和 比探测率分别高达 1.22 A/W 和 3.8×10¹⁰ Jones。

Fig. 25 Structure of silver/barium titanate/silver photodetector

为进一步了解基于钙钛矿近红外光电探测器的研究进展,本文列出了近年来较为先进的光电 探测器的性能参数,并对各光电探测器的性能参 数进行对比分析,如表3所示。

由表 3 可知,在基于钙钛矿的光电探测器 中,Upadhyay 等^[62]提出的钙钛矿光电探测器比 其他钙钛矿光电探测器的性能参数好,响应率高 达 2 A/W,比探测率高达 7.8×10¹² Jones,原因 是探测器中的 BiFeO₃ 和 CH₃NH₃PbI₃ 钙钛矿对 光的吸收特性,以及 BiFeO₃ 作为滤光层和孔阻 挡层提高了响应率,但该探测器的响应速度比其 他钙钛矿光电探测器低。Ollearo 等^[67]提出的钙 钛矿光电探测器的响应速度比其他钙钛矿探测器 快,原因是该探测器通过调整钙钛矿界面处的阻 挡层能级,控制了暗电流密度,使电子阻断层和 钙钛矿之间的界面势全最大化,降低了反向暗电 流密度,提高了响应速度。综上所述,为实现高 性能钙钛矿光电探测器,可以合理利用异质结结 构或量子点结构,增强载流子分离,提高响应 率,并优化器件的其他性能。但是上述方式还存 在一些缺点,如界面缺陷、制备复杂、容易受环 境条件影响等,可以通过材料优化、工艺优化、 封装保护等方式克服上述缺点。因此,钙钛矿光 电探测器在新型、精细电子和医疗设备等领域的 应用前景较好。

5 结 论

近红外光电探测器是一种可针对近红外光波 段进行高灵敏度检测的光电传感器。本文综述了 国内外近年来基于不同材料的近红外光电探测器 的研究进展,讨论了基于 PN、PiN 异质结的硅 基光电探测器,介绍了基于二维材料,即石墨 烯、碲化合物、过渡金属二卤代化合物的近红外 光电探测器的研究进展,阐述了基于钙钛矿材料 的光电探测器。本文对多种材料的近红外光电探 测器的性能参数进行比较分析,说明了各近红外 光电探测器在红外光电系统的潜在应用前景。

由于硅材料具备高速电子载流子传输和快速

表 3 近年来基于钙钛矿较先进的近红外光电探测器

Table 3	Advanced near-infrared	photodetectors based on	perovskite materials in recent	vears
				.,

探测器类型	探测波长 (nm)	响应率 (mA/W)	比探测率 (Jones)	响应时间	参考文献
CH ₃ NH ₃ PbI ₃ /BiFeO ₃	800	2 000	7.80×10^{12}	828 ms	[62]
CH ₃ NH ₃ PbI ₃ /CuInSe ₂	850	20	7.70×10^{11}		[63]
Ag/BaTiS ₃ SCs /Ag	780	1 220	3.80×10^{10}		[65]
$MAPb(I_{1-x}Br_x)_3$	740	331	4.20×10^{10}	380 µs	[66]
$FA_{0.66}MA_{0.34}Pb_{0.5}Sn_{0.5}I_3$	940	500	2.50×10^{12}	1.67 μs	[67]
MAPbI ₃ /CdS	730	430	2.30×10^{11}		[68]
MAPbI _{2.5} Br _{0.5} /碳量子点	975	100	4.00×10^{12}	10 µs	[69]
FAPb _{0.5} Sn _{0.5} I ₃ /SnS 量子点	850	522	2.57×10^{12}	41 µs	[70]

响应的能力,同时对可见光和近红外光具有较高 的灵敏度,能够检测到较低的光信号,加之成本 低廉,微结构加工技术已高度成熟,因此能制造 出体积小且性能优异的硅基光电探测器。由上述 对比分析 PN 和 PiN 结构可知, PiN 结构更有利 于光电探测器的性能提升,特别是在提高探测波 段时, PiN 结构光电探测器通过优化能带结构和 载流子的运动特性,提高了探测器的探测波段范 围和性能指标,因此,硅基光电探测器的响应速 度较快,适用于高速光通信、虹膜识别、光电转 换和图像采集等领域。二维材料的高光电转换效 率和低暗电流使得基于二维材料的光电探测器的 响应速度更快。对基于二维材料(如石墨烯、过 渡金属硫化物、碲化物、钙钛矿等)的光电探测 器进行性能对比分析可知:基于石墨烯的光电探 测器灵敏度高、响应速度快,且单层石墨烯的透 光率高、暗电流噪声低,有利于提高探测器的信 噪比,但是吸收率较低,需要利用较厚的材料层 提高探测器的吸收率;而基于过渡金属硫化物和 碲化物的光电探测器却具有较高的吸收率和灵敏 度,能在较薄的材料层中实现高效的光吸收和光 电转换,但其载流子迁移率较低,响应速度较 慢;钙钛矿具有较高的载流子迁移率和较快的响 应速度,适用于高速光电探测,但钙钛矿材料的 稳定性较差,易受潮和氧化,因此,基于钙钛 矿材料的光电探测器的长期稳定性较差。综上 所述,二维材料(如石墨烯、过渡金属硫化物、 碲化物、钙钛矿等)在应用于近红外光电探测器 时,各有优劣。在研究高性能探测器时,可以根 据具体需求和应用场景,选择合适的材料用于近 红外光电探测器。由于不同的二维材料具有不同 的能带结构,基于不同二维材料的光电探测器具 有不同的波长响应,因此可实现宽波段响应,并 可在光通信、生物医学、柔性电子、光电子、机 器人等领域广泛应用。综上所述,基于不同材料 的探测器具有不同缺陷,为解决缺陷,可利用等 离子体集成技术、量子点杂化、异质结构等进 一步优化器件设计和制造技术,以提高器件的质 量。此外,利用 PN 异质结或肖特基势垒的结构 抑制暗电流和其他噪声源,为后续实现高性能光 电探测器提供了参考。

参考文献

- Lin QQ, Armin A, Burn PL, et al. Filterless narrowband visible photodetectors [J]. Nature Photonics, 2015, 9(10): 687-694.
- [2] Li QY, Guo YL, Liu YQ. Exploration of nearinfrared organic photodetectors [J]. Chemistry of Materials, 2019, 31(17): 6359-6379.
- [3] Wang FK, Zhang Y, Gao Y, et al. 2D metal chalcogenides for IR photodetection [J]. Small, 2019, 15(30): 1901347.
- [4] 钱广,李冠宇,牛斌,等. 高速 InP 基电光调制器 和光电探测器 [J]. 固体电子学研究与进展, 2019, 39(4): 313.
 Qian G, Li GY, Niu B, et al. High-speed InP-based electro-optic modulator and photodetector [J].

Research & Progress of SSE, 2019, 39(4): 313.
[5] 韩孟序, 齐利芳, 尹顺政. InGaAs/InP 台面型 pin

高速光电探测器 [J]. 微纳电子技术, 2021, 58(3): 196-200.

Han MX, Qi LF, Yin SZ. InGaAs/InP Mesa pin high-speed photodetector [J]. Micronanoelectronic Technology, 2021, 58(3): 196-200.

- [6] Lockwood DJ, Pavesi L. Silicon Photonics II: Components and Integration [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 119.
- [7] Harjanne M, Kapulainen M, Ylinen S, et al. Hybrid integration of InP photodetectors with SOI waveguides using thermocompression bonding
 [C] // Proceedings of the Silicon Photonics and Photonic Integrated Circuits II, 2010: 169-179.
- [8] Parihar MS, Lee KH, Park HJ, et al. Insight into carrier lifetime impact on band-modulation devices[J]. Solid-State Electronics, 2018, 143: 41-48.
- [9] 冯松, 高勇, 薛斌. 微纳米 SiGe-SOI 弯曲波导的设计
 计[J]. 固体电子学研究与进展, 2015, 35(1): 71-75.
 Feng S, Gao Y, Xue B. Design of micro-nano SiGe-SOI bending waveguide
 [J]. Research & Progress

- [10] Feng S, Xue B. Research into two photonicintegrated waveguides based on SiGe material [J]. Materials, 2020, 13(8): 1877.
- [11] Long MS, Wang P, Fang HH, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 1803807.
- [12] Li CL, Ma Y, Xiao YF, et al. Advances in perovskite photodetectors [J]. InfoMat, 2020, 2(6): 1247-1256.
- [13] Pradhan B, Kumar GS, Sain S, et al. Size tunable cesium antimony chloride perovskite nanowires and nanorods [J]. Chemistry of Materials, 2018, 30(6): 2135-2142.
- [14] Dhyani V, Dwivedi P, Dhanekar S, et al. High performance broadband photodetector based on MoS₂/porous silicon heterojunction [J]. Applied Physics Letters, 2017, 111(19): 191107.
- [15] Chauhan KR, Patel DB. Functional nanocrystalline TiO₂ thin films for UV enhanced highly responsive silicon photodetectors [J]. Journal of Alloys and Compounds, 2019, 792: 968-975.
- [16] Xu KM, Xiao XB, Zhou WJ, et al. Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15414-15421.
- [17] Li G, Maekita K, Mitsuno H, et al. Over 10 GHz lateral silicon photodetector fabricated on siliconon-insulator substrate by CMOS-compatible process [J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DG06.
- [18] Chen HT, Galili M, Verheyen P, et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors [J]. Journal of Lightwave Technology, 2016, 35(4): 722-726.
- [19] Li TT, Mao D, Petrone NW, et al. Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode [J]. npj 2D Materials and Applications, 2018, 2(1): 36.
- [20] Aliane A, Ouvrier-Buffet JL, Ludurczak W, et al. Fabrication and characterization of sensitive vertical P-i-N germanium photodiodes as infrared detectors
 [J]. Semiconductor Science and Technology, 2020, 35(3): 035013.

- [21] Xie C, Zeng LH, Zhang ZX, et al. Highperformance broadband heterojunction photodetectors based on multilayered PtSe₂ directly grown on a Si substrate [J]. Nanoscale, 2018, 10(32): 15285-15293.
- [22] Tang YL, Chen J. High responsivity of Gr/ n-Si Schottky junction near-infrared photodetector [J]. Superlattices and Microstructures, 2021, 150: 106803.
- [23] Wang L, Jie JS, Shao ZB, et al. MoS₂/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors [J]. Advanced Functional Materials, 2015, 25(19): 2910-2919.
- [24] Li XM, Zhu M, Du MD, et al. High detectivity graphene-silicon heterojunction photodetector [J]. Small, 2016, 12(5): 595-601.
- [25] Ling CC, Guo TC, Lu WB, et al. Ultrahigh broadband photoresponse of SnO₂ nanoparticle thin film/SiO₂/p-Si heterojunction [J]. Nanoscale, 2017, 9(25): 8848-8857.
- [26] Xu M, Xu ZH, Sun ZH, et al. Surface engineering in SnO₂/Si for high-performance broadband photodetectors [J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3664-3672.
- [27] Sun MX, Fang QY, Xie D, et al. Heterostructured graphene quantum dot/WSe₂/Si photodetector with suppressed dark current and improved detectivity [J]. Nano Research, 2018, 11(6): 3233-3243.
- [28] Lin YD, Lee KH, Bao SY, et al. High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform [J]. Photonics Research, 2017, 5(6): 702-709.
- [29] Chatterjee A, Sikdar SK, Selvaraja SK. Highspeed waveguide integrated silicon photodetector on a SiN-SOI platform for short reach datacom [J]. Optics Letters, 2019, 44(7): 1682-1685.
- [30] Casalino M, Russo R, Russo C, et al. Free-space schottky graphene/silicon photodetectors operating at 2 μm [J]. ACS Photonics, 2018, 5(11): 4577-4585.
- [31] Guo JS, Li J, Liu CY, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm [J]. Light: Science & Applications, 2020, 9(1): 29.

- [32] Kim C, Yoo TJ, Chang KE, et al. Highly responsive near-infrared photodetector with low dark current using graphene/germanium Schottky junction with Al₂O₃ interfacial layer [J]. Nanophotonics, 2021, 10(5): 1573-1579.
- [33] Luo F, Zhu MJ, Tan Y, et al. High responsivity graphene photodetectors from visible to nearinfrared by photogating effect [J]. AIP Advances, 2018, 8(11): 115106.
- [34] Zhang T, Chen J. Graphene/InP Schottky junction near-infrared photodetectors [J]. Applied Physics A, 2020, 126: 832.
- [35] Yousefi S, Pourmahyabadi M, Rostami A. Highly efficient dual band graphene plasmonic photodetector at optical communication wavelengths [J]. IEEE Transactions on Nanotechnology, 2021, 20: 255-261.
- [36] Chen WJ, Liang RR, Zhang SQ, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe₂/germanium heterostructure [J]. Nano Research, 2020, 13(1): 127-132.
- [37] Song LY, Tang LB, Hao Q, et al. Large-area SnTe nanofilm: preparation and its broadband photodetector with ultra-low dark current [J]. Optics Express, 2022, 30(9): 14828-14838.
- [38] Song LY, Tang LB, Hao Q, et al. Broadband photodetector based on SnTe nanofilm/n-Ge heterostructure [J]. Nanotechnology, 2022, 33(42): 425203.
- [39] Tong XW, Lin YN, Huang R, et al. Direct tellurization of Pt to synthesize 2D PtTe₂ for highperformance broadband photodetectors and NIR image sensors [J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53921-53931.
- [40] Shui ZD, Wang SY, Yang ZH, et al. Polarizationsensitive self-powered tellurium microwire nearinfrared photodetector [J]. Applied Physics Letters, 2023, 122(10): 101902.
- [41] Wang YG, Huang XW, Wu D, et al. A roomtemperature near-infrared photodetector based on a MoS₂/CdTe p–n heterojunction with a broadband response up to 1 700 nm [J]. Journal of Materials Chemistry C, 2018, 6(18): 4861-4865.
- [42] Jiang JC, Huang JY, Ye ZZ, et al. Self-powered and broadband photodetector based on $SnS_2/ZnO_{1-x}S_x$

heterojunction [J]. Advanced Materials Interfaces, 2020, 7(20): 2000882.

- [43] Kharadi MA, Malik GFA, Khanday FA, et al. Silicene/MoS₂ heterojunction for high-performance photodetector [J]. IEEE Transactions on Electron Devices, 2020, 68(1): 138-143.
- [44] Li AL, Chen QX, Wang PP, et al. Ultrahighsensitive broadband photodetectors based on dielectric shielded MoTe₂/graphene/SnS₂ p-gn junctions [J]. Advanced Materials, 2019, 31(6): 1805656.
- [45] Zhang K, Fang X, Wang YL, et al. Ultrasensitive near-infrared photodetectors based on a graphene– MoTe₂-graphene vertical van der Waals heterostructure [J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5392-5398.
- [46] Yang F, Cong H, Yu K, et al. Ultrathin broadband germanium–graphene hybrid photodetector with high performance [J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13422-13429.
- [47] Qi TL, Gong YP, Li AL, et al. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors [J]. Advanced Functional Materials, 2020, 30(3): 1905687.
- [48] Lu ZJ, Xu Y, Yu YQ, et al. Ultrahigh speed and broadband few-layer MoTe₂/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition [J]. Advanced Functional Materials, 2020, 30(9): 1907951.
- [49] Amani M, Tan CL, Zhang G, et al. Solutionsynthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors [J]. ACS Nano, 2018, 12(7): 7253-7263.
- [50] Ma P, Flory N, Salamin Y, et al. Fast MoTe₂ waveguide photodetector with high sensitivity at telecommunication wavelengths [J]. ACS Photonics, 2018, 5(5): 1846-1852.
- [51] Qu JQ, Chen J. Graphene/GaAs Schottky junction near-infrared photodetector with a MoS₂ quantum dots absorption layer [J]. IEEE Transactions on Electron Devices, 2022, 69(8): 4331-4336.
- [52] Wang XD, Shen H, Chen Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 μm [J]. Advanced Science, 2019, 6(15): 1901050.

- [54] Li XY, Ruan SC, Zhu HO. Easy fabrication of performant and broadband response SnS/ Si photodetector [J]. Materials Science in Semiconductor Processing, 2022, 151: 106991.
- [55] Vinoth E, Archana J, Harish S, et al. Hydrothermally derived layered 2D SnS nanosheets for near infrared (NIR) photodetectors [J]. IEEE Photonics Technology Letters, 2021, 33(24): 1499-1502.
- [56] Zhao Y, Tsai TY, Wu G, et al. Graphene/ SnS₂ van der Waals photodetector with high photoresponsivity and high photodetectivity for broadband 365–2 240 nm detection [J]. ACS Applied Materials & Interfaces, 2021, 13(39): 47198-47207.
- [57] Zhang FY, Yang B, Li YJ, et al. Extra long electron-hole diffusion lengths in CH₃NH₃PbI_{3-x}Cl_x perovskite single crystals [J]. Journal of Materials Chemistry C, 2017, 5(33): 8431-8435.
- [58] Li Y, Yan WB, Li YL, et al. Direct observation of long electron-hole diffusion distance in CH₃NH₃PbI₃ perovskite thin film [J]. Scientific Reports, 2015, 5: 14485.
- [59] Lian ZP, Yan QF, Gao TT, et al. Perovskite CH₃NH₃PbI₃ (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 10⁸ cm⁻³ [J]. Journal of the American Chemical Society, 2016, 138(30): 9409-9412.
- [60] Wang BH, Chen T. Exceptionally stable CH₃NH₃PbI₃ films in moderate humid environmental condition [J]. Advanced Science, 2016, 3(2): 1500262.
- [61] Huang JB, Tan SQ, Lund PD, et al. Impact of H₂O on organic–inorganic hybrid perovskite solar cells
 [J]. Energy & Environmental Science, 2017, 10(11): 2284-2311.
- [62] Upadhyay RK, Singh AP, Upadhyay D, et al.

BiFeO₃/CH₃NH₃PbI₃ perovskite heterojunction based near-infrared photodetector [J]. IEEE Electron Device Letters, 2019, 40(12): 1961-1964.

- [63] Guo RQ, Bao CX, Gao F, et al. Double active layers constructed with halide perovskite and quantum dots for broadband photodetection [J]. Advanced Optical Materials, 2020, 8(17): 2000557.
- [64] Asuo IM, Banerjee D, Pignolet A, et al. Perovskite/ silicon-nanowire-based hybrid heterojunctions for fast and broadband photodetectors [J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2021, 15(4): 2000537.
- [65] Yang FF, Li KH, Fan MZ, et al. Strongly anisotropic quasi-1D BaTiS₃ chalcogenide perovskite for nearinfrared polarized photodetection [J]. Advanced Optical Materials, 2023, 11(5): 2201859.
- [66] Qiao S, Liu Y, Liu JH, et al. High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region [J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34625-34636.
- [67] Ollearo R, Wang JK, Dyson MJ, et al. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation [J]. Nature Communications, 2021, 12(1): 7277.
- [68] García de Arquer FP, Gong XW, Sabatini RP, et al. Field-emission from quantum-dot-in-perovskite solids [J]. Nature Communications, 2017, 8(1): 14757.
- [69] Li ZB, Li HN, Jiang K, et al. Self-powered perovskite/CdS heterostructure photodetectors [J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40204-40213.
- [70] Liu ZR, Zhang ZG, Zhang XN, et al. Achieving high responsivity and detectivity in a quantum-dotin-perovskite photodetector [J]. Nano Letters, 2023, 23(4): 1181-1188.