1 4 Vol.1 No. 4

2012 11 JOURNAL OF INTEGRATION TECHNOLOGY Nov. 2012
518055)
0o o
10

ceph moosefs glusterfs hdfs
256MB moosefs
22.3% 256KB glusterfs 21.0%

ooo

A Characterization and Analysis of Distributed File Systems

XIONG Wen YU Zhi-bin XU Cheng-zhong
(Center for Cloud Computing, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China)

Abstract Recently, there has been an explosive growth in cloud computing, greatly increasing the importance of storage
in such systems. A wide range of applications have been running in cloud and more and more variant applications are
rushing into this platform. Different applications may have different requirements for storages such as file size, the number
of files, and 1/O performance. This indicates only a unified file system in cloud would keep the overall system performance
suboptimal or even cannot satisfy the need of all applications in a cloud. However, it is unclear that whether it is beneficial
to optimize the overall 1/0 performance by employing variant file systems in a single cloud computing platform.

In this paper, we address the above problem by characterizing several popular distributed files systems used in cloud
computing. These file systems are ceph, moosefs, glusterfs and hdfs. Through the characterization, we find that the
performance of the same operation such as read or write may be dramatically different for different file systems. When the
file size is less than 256 MB, moosefs has the best writing performance. On average, its writing performance outperforms
others by 22.3%. As for reading performance, glusterfs is the best when the file size is larger than 256KB. Its reading
performance is 21.0% higher than other file systems. These findings lead us to design a hybrid file system for cloud
computing platform, attempting significantly improve the overall performance.

Keywords distributed file system; performance measurement; benchmarks

TPDS HPCA

IEEE IEEE 2010
7o 77 2011 “ 77 “ 77

59

1 Introduction

In recent years, there is an explosive growth in cloud
computing, greatly increasing the importance of storage
in such systems. According to a new Forrester report
called “Sizing the Cloud” ™, which is published by
an independent research institute -Forrester Research-
expects the global cloud computing market to reach $241
billion in 2020 compared to $40.7 in 2010. At the same
time, Cloud Storage has also been increased in popularity
recently. As one of the three types of basic resources in
Cloud Computing platform ©, storage does not only meet
the storage requirements of various applications in cloud
platform, but also provides the capability for other basic
infrastructures to store and to retrieve data. Furthermore,
there are many popular applications, such as dropbox,
icloud and ubuntu one, directly constructed on cloud
storage systems .

On the other hand, industry has already shift gears to
run applications on cloud. Taking the top two cloud
computing platforms as example, there are a few
hundreds of popular applications already deployed in the
Amazon EC2 P, Meanwhile, there are dozens of typical
applications running in the windows Azure platform ™.

In addition to the larger number of applications running
on cloud, the types of applications are also dramatically
different. For example, the various applications in
Amazon EC2 have been classified into nine categories,
including application hosting, backup and storage, content
and delivery, e-commence, high performance computing,
media hosting, on demand workforce, search engines and
web hosting™.

Different applications may have different requirements
for storage. For example, CampusLIVE uses CloudBerry
Lab solutions on Amazon Simple Storage Service and
Amazon CloudFront to serve millions of static images®.
Soundtrckr is the first geosocial Internet radio, with 8
million songs available to users to create radio stations
and easily share them on social media applications®.
And Marcellus provides video platform, which delivers
high quality video access on its clients” Websites. The file
size of those applications distributes between dozens of
KBs of image, a few MBs of song and a few GBs of high

definition video ™.
Only one file system will keep the overall performance of
cloud system suboptimal or even cannot satisfy the need
of all applications in a cloud. Naturally, making multiple
file systems co-exist in the same cloud may be feasible.
However, it is unclear that whether it is beneficial to
optimize the overall 1/0 performance by employing
variant file systems in a single cloud computing platform.
To address this problem, in this paper, we characterize
several popular distributed files systems used in cloud
computing. These file systems are ceph®™, moosefs®,
glusterfs™ and hdfs™. Through the characterization, we
find that the performance of the same operation such as
read or write may be dramatically different for different
file systems. When the file size is less than 256 MB,
moosefs has the best writing performance. On average,
its writing performance outperforms others by 22.3%. As
for reading performance, glusterfs is the best when the
file size is larger than 256KB. Its reading performance is
21.0% higher than other file systems.
In particular, the main contributions of this paper are as
follows:
We characterize distributed file systems from several
different aspects, including architecture of distributed
file system, algorithm of metadata indexing and data
locating and file system interface. We have run a
series of experiments to evaluate the performance of
the four different distributed file systems.
We propose an approach to optimize overall 1/0
performance for applications involved files with
different size. The key idea is to store the file with a
fixed size to the best suitable distributed file system.
The rest of the paper is organized as follows. Section
2 describes the four distributed file systems. Section 3
depicts the experimental methodology. Section 4 shows
the results and analysis and section 5 concludes the

paper.

2 Distributed file systems

In this section, we describe four different distributed
file systems respectively. These distributed file systems
including: glusterfs, hdfs, ceph and moosefs.

60

2012

2.1 Ceph

Ceph is a distributed object store and file system
designed to provide excellent performance reliability
and scalability. Ceph provides a traditional file system
interface with POSIX semantics and provides object
storage and block device interfaces ™. Ceph has four
components which are monitor, object storage daemon,
client, and metadata servers.

Monitor provides authentication for members in the
storage cluster, and monitors the state of all members in
the storage cluster.

Obiject storage daemon is a smart storage node interacting
with other Object storage daemons, and provides the
capability of self-managing.

The client accesses object storage system or distributed
file system by librados or librbd and get data by
interacting with the Object storage daemons directly.

The metadata server cluster provides a service that maps
the directories and file names of the file system to objects
stored within RADOS clusters.

2.2 Hdfs

Hdfs is the default file system in hadoop ecosystem.
It provides native support for mapreduce computing
framework. It also provides proprietary APIs and POXIS
like interface by fuse-dfs component ™.

Hdfs adopt master-slave architecture. An hdfs cluster
consists of a single namenode and a master server that
manages the file system namespace and regulates access
to files by clients. In addition, there are a number of
datanodes, usually one per node in the cluster, which
manage storage attached to the nodes that they run on. hdfs
exposes a file system namespace and allows user data to
be stored in files. Internally, a file is split into one or more
blocks and these blocks are stored in a set of data-nodes.
2.3 Glusterfs

Glusterfs provides an interface with POXIS semantics and
NFS/CIFS interface. It is a scale-out NAS file system and
has three different components including client, storage
node and NFS/Samba storage gateway. Storage nodes are
typically deployed as storage bricks"®.Glusterfs provides
customers the capability to build RAID-like storage system.
Glusterfs is based on peer to peer architecture, without
metadata server, clients take more responsibilities

including volume management, 1/0 scheduling, file
locating and data caching.

2.4 Moosefs

Moosefs provides interface with POXIS semantics and it
is available on every Operating System with a working
FUSE implementation ™.

Moosefs consists of four components including
chunkserver, metalogger server, client and metadata
server.

Chunkservers storing files data and synchronizing it
among themselves.

Metadata server is a single machine managing the whole
file system and storing metadata for every file.
Metalogger servers are responsible for storing metadata
changelogs and downloading main metadata file
periodically; so as to promote these servers to the role of the
metadata server when the primary master stops working.
Client use as daemon process named mfsmount to
communicate with the metadata server and chunkservers.
2.5 Design Decisions of Distributed File Systems

The design decisions including: architecture of distributed
file system, the algorithm of metadata indexing and
data locating, the file system interfaces, data replicate
mechanism, data migration mechanism, disaster recovery
mechanism and the snapshot technology, the detail
information as table 1 described.

MDS is metadata server in moosefs and ceph, while MDS
is namenode in hdfs.

All of the four different distributed file system provides
the capability to storing data between different fault
domains.

3 Experimental Methodology

In this section, we evaluate the four different distributed
file systems using a file server workload (based on
filebench).

3.1 Experimental Platform

The configurations of all the machines are configured
with, Intel(R) Xeon(R) CPU E5620 @2.40GHz 2CPU 8
cores processor, 16GB of memory, three 2000G 7200 rpm
disks, and a 1000Mbs full-duplex Ethernet connection to
switch, and all the member of each cluster are connected

61

Tablel. Design decitionsof four distributed file system

]f?]lest;;l;letref Moosefs Ceph Glusterfs Hdfs
Metadata server one MDS, single poin MDS cluster No MDS One MDS, single

t of failure

point of failure

Metadata indexing

metadata is stored
In the memory
of metadataserver

metadata is stored in
the memory of
metadata server cluster

Metadata is cached
inthe memory
of client

metadata is stored in
the memory of
metadata server

lookup the directory

consistent hash

consistent hash

lookup the directory

Data locating tree in MDS algorithm algorithm tree in MDS
POSIX, REST API,
interfaces POSIX block device interface, POSIX, NFS/CIFS POSIX like, libhdfs

librbd and librados

data distribution

File data is divided
into chunks with a
fixed size, each
chunk be stored
in chunkservers

File is divided into
object, each object be
storedin object storage
devices

it provides customer
the capability to buildR
AID-like storage system

File data is divided
into data blocks with
a fixed size, each
block be stored in
data nodes

availability

Multiple replicas in
different fault domains

Multiple replicas in
different fault domains

Data mirroring in
different fault domains

Multiple replicas
in different fault
domains

disaster recover

MDS failture, mds-
recovering manually,
chunkserver failture,
data migrating

MDS and object storage
device failture, data
migrating automaticly

Storagenode failture,
recovering manually

MDS failture,
recovering manually,
datanode failture,
data migrating

automaticly automaticly
- MDS is the perform Linear nearly scale-out . MDS s the
scalability Linear nearly scale-out performance
ance Bottleneck
Bottleneck

to one switch.

Table2. Member of storage cluster

The system software information about the measuring
environment is as follows: OS, SUSE Enterprise Edition
11 spl x86_64; OS kernel, 2.6.32.12-0.7; glusterfs,
version3.2.1; moosefs, version 1.6.25; ceph, v0.34; hdfs,
version 1.0.3; filebench version 1.4.9.1.

The ZCAV effect was taken into consideration, each
physical disk was divided into two partitions with fixed
size, each partition was formatted to ext3 as the default
local file system, and just the second partition be used in
the measuring procedure™?.

We run a series of experiments to evaluate the
performance of different distributed file systems
respectively, information of the four storage cluster as
table 2 described.

In hdfs cluster, both the MDS and the second namenode
are in the same physical machine. Other node is the
metalogger server in moosefs cluster, is the monitor in
ceph cluster and is the second namenode in hdfs cluster.

member\DFS moosefs ceph glusterfs hdfs
storage node 3 3 3 3
MDS 1 1 0 1
other node 1 1 0 1
client 1 1 1 1

3.2 Test Methodology

Filebench takes a file size distribution, a read/write ratio
and the number of subdirectories. For each workload,
filebench creates the specified number of subdirectories
and creates predefined file size distribution within
those subdirectories. After the configuration was build,
transactions including a series of read or write operations,
are performed against it. We record the number of files
written/read per second, the total size of the file set and
the time to write or read the entire file set.

In the reading throughput test, two threads read
simultaneously from the distributed file system, each

62

thread reads a sequentially selected file from the
predefined file hierarchy, the size of the I/O operations be
specified with IMB.

In the writing throughput test, two threads write
simultaneously to the distributed file system, each thread
writes to a file according to the predefined file hierarchy,
the size of the 1/O operations be specified with 1MB.

In between each test, we unmounted the tested distributed
file system, and remounted it, this ensured that we started
eachtestona cold cache for that distributed file system. For
each test, we took 10 measurements and averaged them.

4 Resultsand Analysis

4.1 Reading Performance

reading performance

120 MB/s —r— T
100 MB/s |55 — A TN A
T % /TN
—+— glust o, H
80 MB/s || T £ =Sy /i
60 MB/s /,. iy ares = e
40 MB/s A/ A =8
20 MBJs A
A P _ W&/‘

4 " P -
S e > NN
NI St @t@:’ﬁ%%«i:’v N
filesize (bytes)

Figure 1. Reading performance of hdfs, ceph, glusterfs and moosefs
with difference file sizes

When the file size less then 256KB, the distributed
file system with best reading performance is moosefs,
meanwhile, the file size is larger than 256KB, the one
with best reading performance is glusterfs.
The average speed calculated by the total size of the file
set and the total time the benchmark consuming.

Table 3. Averagereading speed

Moosefs Hdfs

Average 55.5 94.18 60.53 92.54
speed(MB/s)

file system Ceph Glusterfs

4.2 Writing Performance

When the file size less then 256MB, the distributed
file system with best writing performance is moosefs,
meanwhile, the file size is larger than 256MB, the one
with best writing performance is hdfs.

The average speed calculated by the total size of the file

2012
writing performance
120 MB/s T T T H
100 MB/s
—&— hdfs : -
i |—— ceph] ,/’ R
80 MB/s f--++i| —+— glusterfs A N« O O
maljv 4 FalVaca!
60 MB/s : y g\\
: A \
40 MB/ I 0
S AR
Vi % ml s
20 MB/s i :
| -
- il

B i -
&'&i@%ﬁk b%%‘g)éi;’& S w@ﬁ\ co{@»i%%i@iﬁ\\o’vo ©
filesize (bytes)

Figure 2. Writing performance of hdfs, ceph, glusterfs, and moosefs
with different file sizes

set and the total time the benchmark consuming.
Tabled. Averagewriting speed

file system Ceph Glusterfs ~ Moosefs Hdfs

Average 36.43 42.49 76.77 84.14
speed(MB/s)

4.3 Different ReplicasLevel in Hdfs

hdfs writing performance

120 MB/s

1 =+ replicas 1
i| —#—replicas 2| !
80 MB/s}-----i| —&—replicas 3 | .

100 MB/s -

60 MB/s
40 MBs :
20 MB/s ;
INE«ERRRRENN
IR ISP IASF P wd

filesize (bytes)

Figure 3. Impact of various replicas levels on writing performance of hdfs

On average, the configuration with one replica is
25% faster than the one with three replicas on writing
performance.

hdfs reading performance
R0MB/s—T—T T T T T T T 1

100 MB/s -+t
—+— replicas 1
—&— replicas 2

80 MB/st1

60 MB/s|--+-

40 MB/s

20 MB/s

e NN

S S S S S

R A N IR - S <SR e S N
N 0T o

filesize (bytes)
Figure 4. Impact of various replicas levels on reading performance of hdfs

63

There is no obvious performance variance between the
two different replicas level on reading performance.

5 Conclusions

Given a series of different file size classes, the
performance of operations such as read or write are
dramatically different on the four distributed file systems.
For a specific application involved a huge number of files
with different size, this approach, by storing the file with
size less than 256MB to moosefs and storing the file with
size larger than 256MB to HDFS, can greatly enhance the
overall write performance. by storing the file with size
less than 256KB to moosefs and storing the file with size
larger than 256KB to glusterfs, can greatly enhance the
overall read performance.

6 FutureWork

Based on our characterization, we can imagine that a
hybrid file system can provide customers the capability
of employing the best suitable file system to store files
with different size and consequently greatly enhance the
overall performance of a distributed storage system in
cloud platform. We, therefore, will implement a cloud
file system with different file systems but with a unified
interface.

[1]
[2]

3]
[4]
[5]

(6]

(71

(8]

[10]

[11]
[12]

Forrester [EB/OL]. http://www.forrester.com/

Drago |, Mellia M, Munafd M M, et al. Inside dropbox
understanding personal cloud storage services [C] // Internet
Measurement Conference, Boston, USA, 2012.
http://aws.amazon.com/solutions/case-studies/.
http://www.windowsazure.com/.

Ghemawat S, Gobioff H, Leung S T. The Google file system [C]
/I 'In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, Bolton Landing, 2003.

Lenk A, Klems M, Nimis J, et al. IEEE Cloud [C] // Proceedings
of the International Conference on Software Engineering
Challenges of Cloud Computing, 2009: 23-31.

Liu X H, Han J Z, Zhong Y Q, et al. Implementing WebGIS on
Hadoop: A Case Study of Improving Small File 1/0 Performance
on HDFS [C] /I Cluster Computing and Workshops, 2009.

Weil S, Brandt S A, Miller E L, et al. Ceph: a scalable, high-
performance distributed file system [C] // Proceedings of the 7th
Conference on Operating Systems Design and Implementation,
2006.

Moosefs homepage [EB/OL].http://www.moosefs.org/
GlusterFS homepage [EB/OL]. http://www.gluster.org

Hadoop homepage [EB/OL]. http://hadoop.apache.org/

Traeger A, Zadok E, Joukov N, et al. A nine year study of file
system and storage benchmarking [J]. ACM Transactions. 2008,
4(2): 56.

