高级检索

三维高斯泼溅技术在场景重建中的研究现状与挑战

Research Status and Challenges of 3D Gaussian Splatting Technology in Scene Reconstruction

  • 摘要: 三维场景重建是自动驾驶和机器人等领域的重要研究课题,在导航建图、环境交互、虚拟和增强现实等任务中应用广泛。从场景表示方式和核心建模技术角度来看,目前基于深度学习的三维场景重建方法主要分为基于代价体积的深度估计方法、基于截断有符号距离函数的体素方法、基于注意力架构的大规模前馈方法、基于多层感知机的神经辐射场方法和三维高斯泼溅(3D Gaussian splatting,3DGS)方法等5种。每种方法都有其独特的优势和局限,而新兴的3DGS方法通过高斯函数显式地表示场景,并通过高效的光栅化操作实现场景的快速渲染和新视角合成。与神经辐射场方法采用多层感知机网络表示场景信息的建模方式不同,3DGS的最大优势是能在保证高效渲染的同时模型还具有可解释性和可编辑性,这为准确重建三维场景铺平了道路。然而,3DGS在场景重建任务中的应用仍面临许多困难和挑战。基于此,本文首先介绍了3DGS的基本概念,并与上述4种方法进行特点比较;其次,本文系统性调研了现有3DGS重建算法,总结了该方法要解决的关键问题,并结合典型实例,综述了相关核心难题的研究现状;最后,本文展望了未来更有可能探索的新研究方向。

     

    Abstract: 3D scene reconstruction is a critical research topic in autonomous driving, robotics, and related fields, with extensive applications in navigation mapping, environmental interaction, and virtual/augmented reality tasks. Current deep learning-based 3D scene reconstruction methods can be primarily categorized into 5 groups from the perspectives of scene representation and core modeling techniques: cost volume-based depth estimation methods, truncated signed distance function-based voxel approaches, transformer architecture-based large-scale feedforward methods, multilayer perceptron-based neural radiance fields, and 3D Gaussian splatting. Each category exhibits unique strengths and limitations. The emerging 3D Gaussian splatting method distinguishes itself by explicitly representing scenes through Gaussian functions while achieving rapid scene rendering and novel view synthesis via efficient rasterization operations. 3D Gaussian splatting diverges from the neural radiance fields-based scene representation paradigm. Its most significant advantage is that it ensures both efficient rendering and interpretable, editable scene modeling, thereby paving the way for accurate 3D scene reconstruction. However, 3D Gaussian splatting still faces numerous challenges in practical scene reconstruction applications. Based on this analysis, this paper first provides a concise introduction to the fundamentals of 3D Gaussian splatting and conducts a comparative analysis with the aforementioned 4 categories. Following a systematic survey of existing 3D Gaussian splatting reconstruction algorithms, we summarize the key challenges addressed by these methods and review current research progress on core technical difficulties through representative case studies. Finally, we prospect potential future research directions worthy of exploration.

     

/

返回文章
返回