高级检索

基于解剖结构边缘增强的高清扩散MRI微结构成像

High-Fidelity Diffusion MRI Microstructural Imaging Using Anatomical Structure-Guided Deep Learning with Edge Enhancement

  • 摘要: 扩散磁共振成像是一种重要的非侵入性技术,可用于探测活体人脑组织的微观结构。传统基于手工设计或扩散模型的组织微结构重建方法通常依赖大量扩散梯度采样,导致扫描和重建过程耗时较长,从而限制了其在临床应用中的可行性与推广。近年来,深度学习在微结构估计中展现出广阔前景,但在缺乏适当约束的情况下,仅依靠单模态扩散磁共振成像扫描仍难以实现对组织微结构的快速且高精度估计。为此,本文提出一种可扩展且适用于多种网络结构的统一框架。该框架融合了解剖先验信息,并引入来自不同扩散模型的跨参数互信息,在全变差正则化的约束下,实现了高保真且高效的扩散微结构成像。实验结果表明,该方法在显著缩短扫描时间的同时,能够保持甚至提升微结构估计的准确性。

     

    Abstract: Diffusion magnetic resonance imaging is a crucial non-invasive technique for probing the microstructure of the human brain in vivo. Traditional hand-crafted and model-based tissue microstructure reconstruction methods typically require extensive diffusion gradient sampling, which is time-consuming and limits their clinical applicability. Recent advances in deep learning have shown great potential for microstructure estimation; however, accurately inferring tissue microstructure from clinically feasible diffusion magnetic resonance imaging scans remains challenging without appropriate constraints. In this paper, we propose a scalable and flexible framework compatible with diverse network architectures. By integrating macro-scale anatomical priors and cross-parameter mutual information from multiple diffusion models, together with total variation regularization, our approach achieves high-fidelity and efficient diffusion microstructure imaging. Experimental results demonstrate that the method significantly reduces scan time while maintaining—or even improving—the accuracy of microstructure estimation.

     

/

返回文章
返回