高级检索

人工智能驱动的合成生物学:医学领域的进展与展望

Artificial Intelligence-Driven Synthetic Biology: Progress and Prospects in Medicine

  • 摘要: 合成生物学将工程学原理与生物学相结合,旨在设计和重编程生物系统,以应用于健康、能源和环境等领域。人工智能,尤其是深度学习的最新进展,正通过智能元件设计、代谢通路优化、疾病诊断与先进疗法加速医学合成生物学的发展。本文首先综述了人工智能在蛋白质工程、基因组编辑、细胞与微生物疗法以及疫苗设计等领域的最新突破;其次,特别介绍了基于AlphaFold的CAR-T结构优化和人工智能指导的AAV衣壳演化提升基因治疗靶向性等代表性案例,突出了人工智能与合成生物学融合的变革性意义;最后,讨论了数据质量、模型可解释性、生物安全与伦理等关键挑战,并展望了人工智能驱动的自动化实验平台、多模态建模和个性化医疗的未来方向。

     

    Abstract: Synthetic biology integrates engineering principles with biology to design and reprogram biological systems for applications in health, energy, and the environment. Recent advances in artificial intelligence (AI), particularly deep learning, are revolutionizing medical synthetic biology by enabling intelligent component design, pathway optimization, disease diagnosis, and advanced therapeutics. This review highlights key breakthroughs, including AlphaFold-guided CAR-T optimization and AI-driven AAV capsid evolution that have transformed gene and cell therapy design. We discuss critical challenges—data quality, model interpretability, biosafety, and ethics—and outline future directions toward AI-enabled automation, multimodal modeling, and personalized medicine. The convergence of AI and synthetic biology marks a paradigm shift toward intelligent, data-driven precision medicine.

     

/

返回文章
返回