高级检索

基于仿斑马鱼和仿鹰眼视觉的复杂背景下目标识别

Target recognition in complex background inspired by zebrafish and eagle eye vision

  • 摘要: 针对反制无人机识别系统在公共场所内部复杂背景下的无人机识别问题, 本文研究了一种基于仿斑马鱼模板匹配视觉识别和仿鹰眼视觉注意的目标识别方法, 通过建立不同姿态的无人机模板数据库, 采用仿鹰眼视觉搜索机制, 结合尺度不变特征变换将姿态模板图像与目标进行匹配, 获得粗略的目标区域。然后计算模板姿态与目标姿态的 Hausdorff 距离比较相似性, 获得最相似姿态。采用仿鹰眼视觉注意机制对遮挡图像进行处理, 提高目标识别的显著性。实验结果表明, 该方法能够在不同复杂背景下实现无人机的准确识别, 与光谱残差的显著性目标识别方法相比, 平均运行时间提高23.5%, 相比差异哈希算法具有更高的结构相似性指数。

     

    Abstract: To meet the requirements of anti-drone recognition system for drone recognition in the complex background within public places, a target recognition method based on Zebrafish template matching vision recognition and eagle eye visual attention was studied in this paper. By establishing a dataset of drone templates with different postures, combining the eagle eye visual search mechanism with scale invariant feature transformation, the attitude template image is matched with the target to obtain a rough target area. Then calculate the similarity of the Hausdorff distance between the template pose and the target pose to obtain the most similar pose. Experimental results showed that, the anti UAV recognition system can realize the recognition of drones in different complex backgrounds. Compared with the significance target recognition method based on spectral residuals, the average running time is improved by 23.5%. The proposed algorithm has a higher structural similarity index than the differential hash algorithm for finding similar template poses.

     

/

返回文章
返回