几种自适应线性判别分析方法在肌电假肢控制中的应用研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重点项目(61135004)


A Study of Different Linear Discriminant Analysis Methods in Myoelectric Prosthesis Control
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    体表肌电信号会随着外部或人体内部环境变化而发生改变,这种时变特征使得固定参数肌电模式分类器的分类精 度会随着时间的延长而下降。为了获得具有稳定性能的肌电假肢控制系统,在肌电模式分类器中加入自适应机制是很有 必要的。本文以传统线性判别分析(Linear Discriminant Analysis,LDA)为基础,尝试在肌电模式分类器中引入三种自适应 方案,并探讨了这三种方案在肌电模式分类应用中的优缺点。初步研究表明:自增强线性判别分析(Self-enhancing LDA, SELDA)分类器和循环训练集线性判别(Cycle Substitution LDA,CSLDA)分类器都能够将识别准确率提升 5% 左右。其 中,SELDA 是一种有效的自适应方案,而 CSLDA 可以得到更高的识别率提升和更好的稳定性,但是计算量较大,需要 更大的代价。卡尔曼自适应线性判别(Kalman Adaptive LDA,KALDA)分类器单独使用效果不明显,需要进一步改进或结 合其他方法使用。

    Abstract:

    When the surface electromyography (sEMG) signals change along with external or internal environment of the human body, general pattern classifiers will lead to a decrease of identification accuracy since they do not update their parameters adaptively. In order to adapt to the time-varying characteristics of sEMG signals, three kinds of adaptive algorithms for updating the parameters of a classifier during the use of artificial limb were introduced to improve the classification accuracy of time-variant sEMG signals. The pilot results of this study show that self-enhancing linear discriminant analysis is an effective solution and cycle substitution linear discriminant analysis presents the best performance but requires a large amount of calculations. The performance of the Kalman adaptive linear discriminant analysis is not prominent when it was used alone, and therefore it needs to be combined with other methods.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
赵曜楠,张浩诗,徐礼胜,等.几种自适应线性判别分析方法在肌电假肢控制中的应用研究 [J].集成技术,2013,2(4):20-26

Citing format
ZHANG Yao-nan, ZHANG Hao-shi, XU Li-sheng, et al. A Study of Different Linear Discriminant Analysis Methods in Myoelectric Prosthesis Control[J]. Journal of Integration Technology,2013,2(4):20-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-09-25
  • 出版日期:
文章二维码