基于长短期记忆神经网络的可用停车位预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省科技计划重大项目(2015B010106004)


Available Parking Space Prediction Based on Long Short-Term Memory Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    可用停车位预测是智能停车诱导系统的关键问题之一。当前基于神经网络的预测技术在较短预测周期内,预测准确度的平均绝对误差在 10 左右,但随着预测步长或周期的增加,预测精度急剧下降。针对这一问题,该文提出了一种在中长预测时间周期内可保持数据变化特征的泊位预测方法。该方法使用模糊信息粒化获取特征数据集,通过训练长短期记忆神经网络预测未来的特征数据集,基于数据插值方法重建出整个区间可用停车位的连续变化曲线。仿真结果表明,该方法在相同预测步长的可用车位预测上,比传统预测方法具有更高的预测精度;在保持相近预测精度的条件下,比传统预测方法具有更高的计算效率。

    Abstract:

    Prediction of available parking spaces is the critical technique in the intelligent parking guidance system. The prediction technology based on neural network can achieve high accuracy in short-term prediction. And existing techniques can reach an average absolute prediction error of about 10. However, with the increase of prediction steps or time-span, the prediction accuracy will decrease dramatically. To solve this problem, a prediction method that can keep the characteristics of data changes in the long-span is introduced in this paper. The method uses the fuzzy information granulation to obtain the feature data sets. Then, a long shortterm memory network is trained to predict the future feature data sets. Finally, an interpolation procedure is applied to reconstruct the curve of the parking space. The simulation results show that the proposed method can achieve better prediction accuracy and higher computation efficiency when compared with traditional prediction methods.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
孙 敏,彭 磊,李慧云.基于长短期记忆神经网络的可用停车位预测 [J].集成技术,2018,7(6):39-48

Citing format
SUN Min, PENG Lei, LI Huiyun. Available Parking Space Prediction Based on Long Short-Term Memory Network[J]. Journal of Integration Technology,2018,7(6):39-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-20
  • 出版日期:
文章二维码