一种基于强化学习的限定代价下卷积神经网结构自动化设计方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重点项目(61433012);科技部重点研发计划项目(2018YFB0204005)


Automatically Design Cost-Constrained Convolutional Neural Network Architectures with Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前的神经网络结构自动化设计方法主要对所设计神经网络结构的预测准确率进行优化。然而,实际应用中经常要求所设计的神经网络结构满足特定的代价约束,如内存占用、推断时间和训练 时间等。该文提出了一种新的限定代价下的神经网络结构自动化设计方法,选取内存占用、推断时间和训练时间三类代表性代价在 CIFAR10 数据集上进行了实验,并与现有方法进行了对比分析。该方法获得了满足特定代价约束的高准确率的卷积神经网络结构,可优化的代价种类比现有方法更多。

    Abstract:

    Recently, automated neural network architecture design (neural architecture search) has yielded many significant achievements. Improving the prediction accuracy of the neural network is the primary goal. However, besides the prediction accuracy, other types of cost including memory consumption, inference time, and training time are also very important when implementing the neural network. In practice, such types of cost are often bounded by thresholds. Current neural architecture search method with budgeted cost constraints can only optimize some specific types of the cost. In this paper, we propose budgeted efficient neural architecture search (B-ENAS) to optimize more types of cost. The experimental results on the well-adopted CIFAR10 dataset show that B-ENAS can learn convolutional neural network architectures with high accuracy under different cost constraints.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
许强,徐杨杰,姜玉林,等.一种基于强化学习的限定代价下卷积神经网结构自动化设计方法 [J].集成技术,2019,8(3):42-54

Citing format
XU Qiang, XU Yangjie, JIANG Yulin, et al. Automatically Design Cost-Constrained Convolutional Neural Network Architectures with Reinforcement Learning[J]. Journal of Integration Technology,2019,8(3):42-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-17
  • 出版日期:
文章二维码