高级检索

基于磁耦合的水下无线携能通信系统

Underwater Simultaneous Wireless Information and Power Transfer System Based on Magnetic Resonance

  • 摘要: 磁耦合无线充电技术不仅能够为水下设备不间断地提供能量, 同时在其传输能量上加载特定 的信号也可以为水下设备构建高速、稳定的数据传输链路, 成为摆脱水下设备供电以及通信瓶颈的有 效手段。该文提出一种基于磁耦合的水下无线携能传输技术, 采用现场可编程逻辑门阵列(FPGA) 开发了基于频移键控(FSK)调制的无线信息传输和无线能量传输模块, 输入功率为 20 W 时, 可实 现 1 Mbps 传输速率的无线充电设备水下低功率损耗数能同传。针对水下设备的移动需求导致信道变 化的问题, 使用支持向量机(SVM)机器学习的方法进行数据解码, 实现了 99.9% 的解码成功率。实验 结果显示, 该文所开发的无线携能传输原型系统在高速率、远距离传输条件下, 具有良好的能量传输 效率和信号解码准确率。

     

    Abstract: Magnetic resonance wireless power transfer can provide continuous energy for the underwater equipment. Moreover, the energy waves carrying information can also construct a high speed and reliable channel for data communications. Therefore, both the power supply and data transfer bottlenecks are broken. In this paper, an underwater simultaneous wireless information and power transfer (USWIPT) technique is investigated. A prototype based on field programmable gate array (FPGA) was developed, and the frequency-shift keying (FSK) modulation was employed to achieve wireless information and power transfer. While the input power is 20 W, the data rate is about 1 Mbps with low power consumption in the underwater environment. To avoid the channel changes due to the mobility of underwater devices, a support vector machine (SVM) based method was proposed for the signal decoding. Experimental results showed that, the proposed system can work under the high speed transmission and long distance, and the decoding accuracy can reach 99.9%.

     

/

返回文章
返回