基于特征混合聚类和关键点检测的智能人脸搜索
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Intelligent Face Search Based on Mixed Feature Clustering and Keypoint Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在信息产业急剧膨胀的时代背景下,主流数字媒体产生了由文字到图片再到视频的演化,如何快速有效地获取视频中人物的关键信息,成为各大互联网娱乐和大数据分析领域争相研究的话题。然而,现有的人物信息获取方法还有极大的局限性,无法在视频界面直接获取信息。为了解决这一问题,该文提出了一种新的“由粗到细”的基于特征混合聚类和关键点检测的智能人脸搜索框架,实现了对互联网视频数据的实时检测与高鲁棒的视频人脸数据智能搜索。该文将大数据下人脸数据实时搜索工作细分,首先,通过基于多尺度深度特征混合聚类的人脸检测算法,使用 Softmax 函数实现数据分类,并运用中心损失函数 center loss 形成聚类中心,随后通过对中心点的回归矫正,达成人脸的粗筛选;然后,通过基于脸部关键点检测算法,提取 68 个人脸关键特征点,生成易于计算处理的标准化 特征码。此外,该文还构造了两个影视类人脸数据集,为后续相关互联网行业、娱乐多媒体提供大数据分析。基于该文章整体实验结果表明,在人脸快速检测方面,与现有的主流方法相比,该文方法在 识别精度和效率上,都具有一定的提升,其中,基于多尺度深度特征混合聚类算法实验的识别效率提升 31.2%,假阳性样本辨别力提升 3 倍,整体运行效率达标,具有一定的实用价值。

    Abstract:

    The information industry is developing rapidly and the mainstream digital media has produced an evolution from text to pictures to videos. How to quickly and effectively extract the key points of interest of characters in videos has become a hot topic in the field of Internet entertainment and big data analysis. However, existing methods for acquiring character information usually have significant limitations in obtaining information directly from the video interface. To address this problem, this paper proposes a novel “coarse to fine” intelligent face search framework based on feature hybrid clustering and key point detection. The real-time search of face data under big data is subdivided. First, the face detection algorithm based on multi-scale depth feature hybrid clustering uses the Softmax function to achieve data classification, and then uses the central loss function to form clustering centers that are modified by the regression of centroids to achieve coarse screening of faces. Then, based on the face key point detection algorithm, 68 individual face key feature points are extracted to generate standardized features that are easy to calculate and process to realize the fine search of faces under big data. This enables real-time and highly robust intelligent face search from Internet video data. Notably, this paper also constructs two film and television face datasets to provide big data analysis for subsequent related Internet industry and entertainment multimedia. System’s overall experimental results prove that this paper has a certain improvement in recognition accuracy and efficiency compared with existing mainstream face detection methods, including a 31.2% improvement in recognition efficiency and 3 times improvement in discrimination of false-positive samples, and the overall operation efficiency meets the standard and has certain practical value.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
张昭辉,张吉光,徐士彪,等.基于特征混合聚类和关键点检测的智能人脸搜索 [J].集成技术,2022,11(1):52-65

Citing format
ZHANG Zhaohui, ZHANG Jiguang, XU Shibiao, et al. Intelligent Face Search Based on Mixed Feature Clustering and Keypoint Detection[J]. Journal of Integration Technology,2022,11(1):52-65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-21
  • 出版日期:
文章二维码