面向未知环境探索的分层架构路径规划算法
作者:
中图分类号:

TP242

基金项目:

北京市自然科学基金项目(3212013);中国汽车工程学会青年人才托举项目(YESS20200301);北京市科协金桥工程种子资金


Hierarchical Path Planning Algorithm for Exploring Unknown Environments
Author:
Fund Project:

This work is supported by Natural Science Foundation of Beijing (3212013), Young Elite Scientists Sponsorship Program by CAST (YESS20200301) and Beijing JinQiao Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为实现无人平台在未知环境下的高效路径探索,该文提出了一种以“感知-规划-控制”分层架构为基础的路径规划算法。在感知层通过 Cartographer 建图算法实时构建未知环境的二维栅格地图。在规划层,通过 Canny 边缘检测、基于密度的聚类算法、效能函数评估选择最佳探索目标点,并在规划的效能函数中引入探索方向延续性概念,克服了传统路径规划反复探索已知环境的难题。在控制层,通过概率路线图算法规划从当前位姿到目标点的最短路径,并通过纯跟踪算法和向量直方图算法实现了路径无碰撞跟踪。3 种典型环境下的仿真实验表明,所提出的算法在不同环境下均具有较高的探索效率和完成度。

    Abstract:

    To realize efficient path exploration of unmanned platforms in unknown environments, a path planning algorithm based on a hierarchical architecture of “perception planning control” is studied in this work. Real-time construction of two-dimensional grid maps of unknown environments using the Cartographer mapping algorithm at the perception layer. At the planning level, the optimal exploration target point is selected by Canny edge detection, density-based clustering algorithm, and performance function evaluation. Specifically, the concept of continuity of exploration direction is introduced into the efficiency function of planning, overcoming the drawbacks of traditional path planning that repeatedly explores known environments. At the control layer, the shortest path from the current pose to the target point is planned using probability roadmap algorithm, and collision-free tracking of the path is achieved through pure tracking algorithm and vector histogram algorithm. The effectiveness of the algorithm was verified through simulation in three typical environments, and the results showed that the proposed algorithm can achieve higher exploration efficiency and completeness in different environments.

    参考文献
    [1] Gavrilut I , Cret G C , Grava C , et al. Exploration Algorithm for a Mobile Robot. An Experiment[C]// International Conference on Engineering of Modern Electric Systems. EasyChair, 2021.
    [2] Eustice, Ryan M , Kim, et al. Active visual SLAM for robotic area coverage: Theory and experiment[J]. International Journal of Robotics Research, 2015.
    [3] Bonetto E , Goldschmid P , Pabst M , et al. iRotate: Active Visual SLAM for Omnidirectional Robots[J]. Robotics and Autonomous Systems, 2022:154.
    [4] Chen Y, Huang S, Fitch R. Active SLAM for mobile robots with area coverage and obstacle avoidance[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1182-1192.
    [5] 梁泉. 未知环境中基于强化学习的移动机器人路径规划[J]. 机电工程, 2012, 29(4):5.
    [6] 成怡,郝密密. 改进深度强化学习的室内移动机器人路径规划[J]. 计算机工程与应用, 2021, 57(21):7.
    [7] Wen S, Zhao Y, Yuan X, et al. Path planning for active SLAM based on deep reinforcement learning under unknown environments[J]. Intelligent Service Robotics, 2020, 13: 263-272.
    [8] Li Z, Xin J, Li N. Autonomous Exploration and Mapping for Mobile Robots via Cumulative Curriculum Reinforcement Learning[J]. arXiv preprint arXiv:2302.13025, 2023.
    [9] Liu Y, Liu H, Wang B. Autonomous exploration for mobile robot using Q-learning[C]//2017 2nd international conference on advanced robotics and mechatronics (ICARM). IEEE, 2017: 614-619.
    [10] Li H, Liu Y, Qi Y. Robot Path Planning Method Based on Reinforcement Learning in Unknown Environment[J]. World Scientific Research Journal, 2019, 5(12): 24-29.
    [11] Li H, Zhang Q, Zhao D. Deep reinforcement learning-based automatic exploration for navigation in unknown environment[J]. IEEE transactions on neural networks and learning systems, 2019, 31(6): 2064-2076.
    [12] Kim S K, Bouman A, Salhotra G, et al. PLGRIM: Hierarchical value learning for large-scale exploration in unknown environments[C]//Proceedings of the International Conference on Automated Planning and Scheduling. 2021, 31: 652-662.
    [13] Yamauchi B . A frontier-based approach for autonomous exploration[C]// IEEE International Symposium on Computational Intelligence in Robotics Automation. IEEE, 2002.
    [14] Deng D , Duan R , Liu J ,et al.Robotic Exploration of Unknown 2D Environment Using a Frontier-based Automatic-Differentiable Information Gain Measure[J].IEEE, 2020.DOI:10.1109/AIM43001.2020.9158881.
    [15] Vidal E , Palomeras N , K Isteni?, et al. Two-Dimensional Frontier-Based Viewpoint Generation for Exploring and Mapping Underwater Environments[J]. Sensors, 2019, 19(6).
    [16] Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016: 1271-1278.
    [17] Yang Y, Li Y, Wen X, et al. An optimal goal point determination algorithm for automatic navigation of agricultural machinery: Improving the tracking accuracy of the Pure Pursuit algorithm[J]. Computers and Electronics in Agriculture, 2022, 194: 106760.
    [18] Yim W J, Park J B. Analysis of mobile robot navigation using vector field histogram according to the number of sectors, the robot speed and the width of the path[C]//2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). IEEE, 2014: 1037-1040.
    [20] Amsters R, Slaets P. Turtlebot 3 as a robotics education platform[C]//Robotics in Education: Current Research and Innovations 10. Springer International Publishing, 2020: 170-181.
    [21] Xu Y, Yu J, Tang J, et al. Explore-bench: Data sets, metrics and evaluations for frontier-based and deep-reinforcement-learning-based autonomous exploration[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 6225-6231.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

引文格式
樊 杰,张旭东,耿江波,等.面向未知环境探索的分层架构路径规划算法 [J].集成技术,2024,13(2):52-63

Citing format
FAN Jie, ZHANG Xudong, GENG Jiangbo, et al. Hierarchical Path Planning Algorithm for Exploring Unknown Environments[J]. Journal of Integration Technology,2024,13(2):52-63

复制
分享
文章指标
  • 点击次数:956
  • 下载次数: 3897
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-17
  • 最后修改日期:2023-07-17
  • 录用日期:2024-01-16
  • 在线发布日期: 2024-01-16
文章二维码