睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN959.6

基金项目:

腾讯技术公益创投计划


Non-contact Identification Recognition Based on Millimeter-Wave Radar Cardiac Signals During Sleep Monitoring: A Deep Convolution Model
Author:
Affiliation:

Fund Project:

Tencent Technology Philanthropy and Venture Capital Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用毫米波雷达进行非接触式生命特征监测能进行持续且较难察觉的身份识别。由于心脏运动受各种复杂因素影响,为捕获更具特征的波形信息,本文利用发射调频连续波的毫米波雷达对用户睡眠时的心脏数据进行监测和捕获。此外,本文提出一种基于心脏运动一维时序雷达信号的深度卷积神经网络身份识别方法,并与长短期记忆网络、InceptionTime 和 LSTformer 这 3 种深度学习算法进行了性能对比分析。在实验室采集的人体静卧状态下的心脏信号数据集上,各模型的最终分类准确率均大于 85% 。其中,深度卷积神经网络 InceptionTime 的准确率最高,但耗时最长;长短期记忆网络模型和 LSTformer 的准确率较低,但耗时较短;本文提出的卷积神经网络模型的准确率与 InceptionTime 相当,但计算耗时较短,在准确率和计算效率之间取得了平衡。

    Abstract:

    Non-contact vital sign monitoring using millimeter-wave radar offers continuous and discreet identification. Cardiac motion is influenced by various complex factors, making it challenging to capture characteristic waveform information. To address this, the study employs millimeter-wave radar transmitting frequency modulated continuous waves to monitor and record cardiac data during sleep. Additionally, the paper proposes a deep convolutional neural network (CNN)-based identity recognition method using one-dimensional time-series radar signals of cardiac motion. The performance of this method is compared with three deep learning algorithms: long short-term memory Network, InceptionTime, and LSTformer. The final classification accuracies of all models exceed 85% on a dataset of heart signals collected in a resting state in the laboratory. Among the models, InceptionTime achieves the highest accuracy but requires the longest processing time. The long short-term memory and LSTformer models exhibit lower accuracy but faster processing. The CNN model proposed in this study demonstrates comparable accuracy to InceptionTime, while requiring less computational time, thus balancing accuracy and efficiency.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
段玉龙,胡巍,黄毅,等.睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型 [J].集成技术,2025,14(2):33-45

Citing format
DUAN Yulong, HU Wei, HUANG Yi, et al. Non-contact Identification Recognition Based on Millimeter-Wave Radar Cardiac Signals During Sleep Monitoring: A Deep Convolution Model[J]. Journal of Integration Technology,2025,14(2):33-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-30
  • 最后修改日期:2023-11-07
  • 录用日期:
  • 在线发布日期: 2025-03-14
  • 出版日期:
文章二维码