基于领域自适应预训练的黑暗场景下行为识别研究
作者:
作者单位:

1.中国科学院深圳先进技术研究院,中国科学院大学;2.上海人工智能实验室;3.中国科学院深圳先进技术研究院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

科技创新 2030——“新一代人工智能”重大项目(2022ZD0160505);国家自然科学基金资助项目(62272450)


Domain-Adaptive Pretraining for Action Recognition in the Dark
Author:
Affiliation:

1.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen;2.University of Chinese Academy of Sciences;3.Shanghai Artificial Intelligence Laboratory

Fund Project:

National Key R&D Program of China(2022ZD0160505), and National Natural Science Foundation of China(62272450)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    黑暗场景与传统预训练模型所依赖的数据之间存在显著差异,传统的预训练-微调策略难以达到理想效果,而从头开始的预训练则代价高昂。针对这一问题,本研究提出了一种领域自适应预训练方法,旨在改善黑暗环境下的行为识别性能。该方法融合了外部视觉去暗增强模型以引入关键的去暗知识,并采用跨领域自蒸馏框架来优化预训练模型,可有效减小明暗场景间视觉表征的域差异。在一系列黑暗场景行为识别实验中,本方法在全监督的黑暗场景行为识别数据集上获得了97.19%的准确率,在无源领域自适应场景数据集中,准确率提升至49.11%,而在多源领域自适应场景数据集中,准确率达到了54.63%。

    Abstract:

    Action recognition in the dark is a challenging task in practice because it is difficult to learn robust action representations from low light environments. Furthermore, there is a domain gap between dark scenes and the data used by traditional pretrained models, which results in suboptimal results with the traditional pretrain-finetune approach, and pretraining from scratch is costly. To address this issue, a domain-adaptive pretraining method is proposed to improve action recognition performance in the dark environments. The method integrates an external vision enhancement model for de-darkening to introduce critical knowledge for dark scene processing. It also employs a cross-domain self-distillation framework to reduce the domain gap of visual representations between illuminated and dark scenes. Through extensive experiments in various dark environment action recognition settings, the proposed approach can achieve a Top-1 accuracy of 97.19% on the dark dataset of fully supervised action recognition. In the source-free domain adaptation on the Daily-DA dataset, the accuracy can be improved to 49.11%. In the multi-source domain adaptation scenario on the Daily-DA dataset, the Top-1 accuracy can reach 54.63%.

    参考文献
    相似文献
    引证文献
引用本文

许清林,乔宇,王亚立.基于领域自适应预训练的黑暗场景下行为识别研究 [J].集成技术,

Citing format
QinglinXu, Yu Qiao, Yali Wang. Domain-Adaptive Pretraining for Action Recognition in the Dark[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:2023-12-25
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码