面向单向加密流量的移动应用程序分类技术研究
作者:
作者单位:

哈尔滨工程大学计算机科学与技术学院

作者简介:

通讯作者:

基金项目:

国家重点研发计划子课题(2021YFB3101401)

伦理声明:



Research on Mobile Application Classification Technology for Unidirectional Encrypted Traffic
Author:
Ethical statement:

Affiliation:

Computer Science and Technology,Harbin Engineering University,Harbin

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在加密移动应用程序流量分类领域,传统方法都是基于双向流量的特征对流量进行分类,但在实际场景中,不对称路由会导致远程监控者只能获得单向流量,使得传统方法分类准确率下降。因此本文设计一种只使用单向流量特征的加密移动应用程序流量分类方法。由于下行流量包含的信息多于上行流量,本文选择对下行流量的有效负载进行分析。由于移动应用程序流量具有时间和空间的相关性,提出使用双向长短期记忆网络捕获数据流的时序相关性、使用卷积神经网络学习特征的空间相关性,并引入注意力层关注重要特征来进一步提高分类准确率。该方法相较于之前的方法,它的使用范围更广,能够同时适用于单向流量和双向流量场景,使用更少的特征获取更高的准确率。

    Abstract:

    In the field of encrypted mobile application traffic classification, traditional methods classify traffic based on the characteristics of bidirectional traffic. However, in actual scenarios, asymmetric routing will cause remote monitors to only obtain unidirectional traffic, which will reduce the accuracy of traditional methods. Therefore, this paper designs an encrypted mobile application traffic classification method using only one-way traffic characteristics. Since downlink traffic contains more information than uplink traffic, this paper chooses to analyze the payload of downlink traffic. Due to the temporal and spatial correlation of mobile application traffic, a bidirectional long short-term memory network is proposed to capture the temporal correlation of data streams, a convolutional neural network is used to learn the spatial correlation of features, and an attention layer is introduced to focus on important features to further improve the recognition accuracy. Compared with the previous methods, this method has a wider range of use, can be applied to both unidirectional and bidirectional traffic scenarios, and uses fewer features to obtain higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张莉,谭静文,苘大鹏,等.面向单向加密流量的移动应用程序分类技术研究 [J].集成技术,

Citing format
ZHANG Li, TAN Jingwen, MAN Dapeng, et al. Research on Mobile Application Classification Technology for Unidirectional Encrypted Traffic[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-01-28
  • 最后修改日期:2024-01-28
  • 录用日期:
  • 在线发布日期: 2024-06-28
  • 出版日期: