基于机器学习的加密流量分析方法综述
作者:
作者单位:

1.中国人民公安大学;2.公安部第三研究所

作者简介:

通讯作者:

基金项目:

河南省高校人文社会科学一般项目(2024-ZZJH-290),公安部科技强警基础工作计划(2023JC21),河南警察学院科研项目(HNJY-2023-42)

伦理声明:



A Survey of Machine Learning-Based Encrypted Traffic Analysis Methods
Author:
Ethical statement:

Affiliation:

1.People''s Public Security University of China;2.The Third Research Institute of the Ministry of Public Security

Funding:

the General Project for Research in Humanities and Social Sciences in Universities of Henan Province (2024-ZZJH-290), Basic Research Program for Science and Technology Strengthening Police Force of the Ministry of Public Security (2023JC21), and Research Project of Henan Police College (HNJY-2023-42).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着互联网技术的快速发展,网络安全问题日益突出,其中加密流量的识别与分类成为了一个重要的研究方向。本文对当前基于机器学习的加密流量分类技术进行了全面的综述。首先,按分层的视角简要介绍了常见的加密协议及特点。接着,对该领域的数据集和评估指标进行了概览。在此基础上,对基于传统机器学习的加密流量分析方法和基于深度学习的方法进行了讨论,对其中的特征工程、分类器模型等关键技术进行了分析。最后,总结了目前该领域面临的可解释性不足、对抗样本风险等挑战,并对未来的可解释性加强、自动化特征和模型结构优化等研究方向进行了展望。

    Abstract:

    With the rapid development of Internet technology, network security issues have become increasingly prominent. Among these, the identification and classification of encrypted traffic have emerged as significant research directions. This paper provides a comprehensive review of current machine learning-based techniques for encrypted traffic classification. First, it briefly introduces common encryption protocols and their characteristics from a layered perspective. Then, it provides an overview of the datasets and evaluation metrics used in this field. Based on this foundation, it discusses both traditional machine learning methods and deep learning methods for encrypted traffic analysis, with a focus on key techniques such as feature engineering and classifier models. Finally, it summarizes the challenges currently faced in this field, including the lack of interpretability and the risk of adversarial examples, and looks ahead to future research directions aimed at enhancing interpretability, automating feature extraction, and optimizing model structures.

    参考文献
    相似文献
    引证文献
引用本文

仝鑫,杨莹,索奇伟,等.基于机器学习的加密流量分析方法综述 [J].集成技术,

Citing format
tong xin, YANG Ying. A Survey of Machine Learning-Based Encrypted Traffic Analysis Methods[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-01-30
  • 最后修改日期:2024-02-02
  • 录用日期:
  • 在线发布日期: 2024-07-16
  • 出版日期: