多实例学习在医学图像分析中的应用进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R318

基金项目:

北京大学医学部教育教学研究课题项目(2022YB17);北京市自然科学基金面上项目(4242004);国家蛋白质科学研究(北京)设施北京大学分中心开放课题项目(KF-202402);国家自然科学基金项目(32271053);北京市自然科学基金-海淀原始创新联合基金项目(L222016)


Application Progress of Multi-instance Learning in Medical Image Analysis
Author:
Affiliation:

Fund Project:

Peking University Health Science Center Medical Education Research Funding Project (2022YB17), Beijing Natural Science Foundation (4242004), Open Research Fund of the National Center for Protein Sciences at Peking University in Beijing (KF-202402), National Natural Science Foundation of China (32271053), and Beijing Natural Science Foundation - Haidian Original Innovation Joint Fund (L222016)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多实例学习(multiple-instance learning,MIL)是一种弱监督学习方法,近年来广泛应用于医学图像分析领域。本文综述了 MIL 在全切片图像中的应用进展,详细分析了其在肿瘤检测、亚型分级和生存预测中的作用。MIL 在弱监督学习中具有独特优势,可通过引入新机制进行优化和拓展,以适应更多的应用场景。本文首先综述了部分应用广泛或独具优势的 MIL 模型,并详细介绍了它们的技术特点和具体应用场景;其次,介绍了 MIL 在多模态医学图像分析中的应用进展和技术进步;最后,总结了 MIL 目前的研究进展,并展望了其未来发展。

    Abstract:

    Multiple-instance learning (MIL), as a weakly supervised learning method, has been widely applied in the field of medical image analysis in recent years. The paper reviews the progress of MIL applications in whole slide images, with a detailed analysis of its roles in tumor detection, subtype classification, and survival prediction. MIL holds unique advantages in weakly supervised learning , which can be optimized and extended through the introduction of new mechanisms to adapt to a broader range of application scenarios. The paper first reviews some widely used or uniquely advantageous MIL models, elaborating on their technical features and specific application contexts. Secondly, it introduces the application and technology advancements of MIL in multimodal medical image analysis. Finally, the current research progress of MIL is summarized, and its future development prospects are explored.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
谢卓恒,伊鸣,黄新瑞.多实例学习在医学图像分析中的应用进展 [J].集成技术,2025,14(2):24-32

Citing format
XIE Zhuoheng, YI Ming, HUANG Xinrui. Application Progress of Multi-instance Learning in Medical Image Analysis[J]. Journal of Integration Technology,2025,14(2):24-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-11
  • 最后修改日期:2024-12-28
  • 录用日期:2025-01-07
  • 在线发布日期: 2025-03-14
  • 出版日期:
文章二维码