YOLO-PointMap: 基于轻量化动态特征融合的实时人体背部穴位识别
CSTR:
作者:
作者单位:

中国科学院深圳先进技术研究院

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),国家科技攻关计划,深圳市科技计划,介入手术机器人诊疗关键技术深圳市工程实验室


YOLO-PointMap: Real-time human back acupoint recognition based on lightweight dynamic feature fusion
Author:
Affiliation:

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Fund Project:

The National Natural Science Foundation of China,The National Key Technologies R&D Program of China,Shenzhen Science and Technology Program,Shenzhen Engineering Laboratory for Diagnosis & Treatment key technologies of interventionalsurgical robots

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针灸作为中医学的重要组成部分,在全球范围内具有广泛的应用价值。然而,传统针灸疗法因穴位定位依赖医生经验,缺乏标准化,导致疗效再现性较差,阻碍了其推广。针灸机器人作为一种智能化医疗设备,为针灸技术的标准化和普及提供了新契机。本文针对针灸点密集分布、特征不明显等挑战,提出了改进的YOLOv8-Pose模型——YOLO-PointMap。通过引入动态卷积优化C2f模块,并设计基于通道注意力的特征融合模块,模型在多尺度特征提取与融合方面取得了显著提升。实验结果表明,YOLO-PointMap在测试集上的EPE、PCK和mAP50-95(Pose)等指标优于现有方法,数值分别达到了3.27、1和84.9%,尤其在密集关键点识别和弱特征区域定位上表现卓越,为针灸机器人技术的发展提供了有力支持,同时展现了在虚拟现实和智能交互等领域的潜在应用价值。

    Abstract:

    As a vital part of traditional Chinese medicine, acupuncture has broad global applications. However, the reliance on practitioners'' experience for acupoint localization in traditional acupuncture methods leads to a lack of standardization, restricting its reproducibility and broader adoption. Acupuncture robots, as intelligent medical devices, offer new opportunities for standardizing and promoting acupuncture techniques. This paper introduces an improved YOLOv8-Pose model, YOLO-PointMap, designed to address challenges in dense acupoint distribution and weak feature recognition. By incorporating dynamic convolution to optimize the C2f module and introducing a channel-attention-based feature fusion module, the model achieves significant advancements in multi-scale feature extraction and integration. Experimental results show that the EPE, PCK and mAP50-95 (Pose) indexes of YOLO-PointMap on the test set are superior to the existing methods, with the values reaching 3.27, 1 and 84.9% respectively, especially in dense key point identification and weak feature region localization. It provides strong support for the development of acupuncture robot technology, and shows the potential application value in the fields of virtual reality and intelligent interaction.

    参考文献
    相似文献
    引证文献
引用本文

黄凌风,杨世龙,谢耀钦. YOLO-PointMap: 基于轻量化动态特征融合的实时人体背部穴位识别 [J].集成技术,

Citing format
huanglingfeng, Yang ⑩long, Xie Yaoqin. YOLO-PointMap: Real-time human back acupoint recognition based on lightweight dynamic feature fusion[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-29
  • 最后修改日期:2024-12-17
  • 录用日期:2024-12-27
  • 在线发布日期: 2025-01-03
  • 出版日期:
文章二维码