基于改进YOLOv5s的复杂环境道路坑洼检测方法
CSTR:
作者:
作者单位:

湖北汽车工业学院

作者简介:

通讯作者:

中图分类号:

TP391.41;U418

基金项目:

湖北省自然科学基金计划(十堰创新发展联合基金)培育项目(2024AFD116);湖北省教育厅科学技术研究计划重点项目(D20231805);湖北汽车工业学院博士科研启动基金(BK202307,BK201604);湖北省自然科学基金(青年项目)(2023AFB481)


Road Pothole Detection Method in Complex Environment Based on Improved YOLOv5s
Author:
Affiliation:

Hubei University of Automotive Technology

Fund Project:

Natural Science Foundation of Hubei Province of China (Joint Fund for Innovation and Development of Shiyan) (2024AFD116); Key Project of Science and Technology Research Plan of Hubei Provincial Department of Education (D20231805); Doctoral Research Start-up Fund of Hubei University of Automotive Technology (BK202307,BK201604); Natural Science Foundation of Hubei Province of China (2023AFB481)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为使自动驾驶系统能对复杂环境道路坑洼进行有效检测与定位,对现有YOLOv5目标检测算法进行改进。首先,用MobileNetV3替换原模型的骨干部分,减少模型参数量,轻量化网络模型;此外,在YOLOv5的颈部引入BiFPN模块,提升模型在多尺度特征融合、信息传递、特征表达能力以及检测精度方面的性能,同时保持模型的轻量级设计;然后,引入生成对抗神经网络(GAN)的图像风格迁移的思想,采用PaddleGan进行数据处理,丰富数据集的多样性;最后,在自制的数据集上进行模型的训练与验证,实验结果表明:改进的YOLOv5算法准确率和mAP值分别提升了3.5%、0.9%,检测速度提升了5.8帧/s。改进的算法更加的轻量化,提高了检测的精度,为复杂环境下坑洼检测提供技术参考。

    Abstract:

    To enable autonomous driving systems to effectively detect and locate road potholes in complex environments, improvements have been made to the existing YOLOv5 object detection algorithm. Firstly, MobileNetV3 is employed to replace the original backbone of the model, reducing the parameter count and achieving a more lightweight network design. Additionally, a BiFPN (Bidirectional Feature Pyramid Network) module is introduced in the neck of YOLOv5, significantly enhancing the model"s performance in multi-scale feature fusion, information propagation, feature representation, and detection accuracy, while maintaining the lightweight nature of the architecture. Furthermore, the concept of image style transfer from Generative Adversarial Networks (GANs) is incorporated, utilizing PaddleGAN for data augmentation to increase the diversity of the dataset. Finally, experiments conducted on a custom dataset revealed that the improved YOLOv5 algorithm achieved a 3.5% increase in accuracy, a 0.9% improvement in mAP, and an enhancement in detection speed by 5.8 frames per second (fps). The proposed algorithm is more lightweight and enhances detection precision, providing a valuable technical reference for pothole detection in complex environments.

    参考文献
    相似文献
    引证文献
引用本文

魏武,龚家元,车凯,等.基于改进YOLOv5s的复杂环境道路坑洼检测方法 [J].集成技术,

Citing format
wei wu, gong jia yuan, che kai, et al. Road Pothole Detection Method in Complex Environment Based on Improved YOLOv5s[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-07
  • 最后修改日期:2025-01-17
  • 录用日期:2025-02-06
  • 在线发布日期: 2025-02-07
  • 出版日期:
文章二维码