基于Transformer编码器的脑血流速度重建模型研究
CSTR:
作者:
作者单位:

1.中国科学院深圳先进技术研究院;2.澳门科技大学

作者简介:

通讯作者:

中图分类号:

R318

基金项目:


基于Transformer编码器的脑血流速度重建模型研究
Author:
Affiliation:

1.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences;2.Macau University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑血流速度(cerebral blood flow velocity, CBFV)重建对脑血管功能长期评估至关重要。为此,该研究提出一种基于Transformer编码器的多变量时间序列模型。该模型利用动脉血压(Arterial Blood Pressure, ABP)和CO2时间序列信号实现CBFV的重建。模型引入长短期记忆网络(long short-term memory, LSTM)模块,通过LSTM子模块弥补了注意力机制全局注意力分散的缺点,强化了局部细节;并采用混合损失函数,控制了局部波形误差,从而提高重建精度。此外,该研究通过ABP与心电(Electrocardiogram, ECG)信号之间的关联设计迁移学习策略,以缓解数据不足对重建任务的影响。基于贝斯以色列女执事医疗中心的糖尿病脑血管调节数据集的实验结果表明,该模型在CBFV重建任务中的表现优于现有回归模型和深度学习模型。实验结果显示该重建模型的重建结果与真实值的皮尔逊相关系数为0.518,动态时间规整距离为17.879,互信息为0.343。同时,该模型可在0.04秒内完成200个数据点的重建。

    Abstract:

    The reconstruction of cerebral blood flow velocity (CBFV) is essential for the long-term assessment of cerebrovascular function. To this end, this study proposes a multivariate time-series model based on a Transformer encoder to reconstruct CBFV signals. The model utilizes time-series signals of arterial blood pressure (ABP) and CO2 to achieve accurate CBFV reconstruction. A long short-term memory (LSTM) module is introduced into the model to address the limitation of dispersed global attention in the attention mechanism, thereby enhancing the processing of local details. Additionally, a mixed loss function is employed to control local waveform errors, improving reconstruction accuracy. Furthermore, a transfer learning strategy is designed based on the correlation between ABP and electrocardiogram (ECG) signals to alleviate the impact of data scarcity on the reconstruction task. Experimental results on the cerebrovascular regulation dataset of diabetic patients from Beth Israel Deaconess Medical Center demonstrate that the proposed model outperforms existing regression models and deep learning models in CBFV reconstruction tasks. The results show a Pearson correlation coefficient of 0.518, a dynamic time warping distance of 17.879, and a mutual information value of 0.343 between the reconstructed and true values. Additionally, the model can reconstruct 200 data points within 0.04 seconds.

    参考文献
    相似文献
    引证文献
引用本文

刘高城,童嘉博,杨仕林,等.基于Transformer编码器的脑血流速度重建模型研究 [J].集成技术,

Citing format
Liu Gaocheng, Tong Jiabo, Yang Shilin, et al.基于Transformer编码器的脑血流速度重建模型研究[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-18
  • 最后修改日期:2025-02-10
  • 录用日期:2025-02-12
  • 在线发布日期: 2025-02-13
  • 出版日期:
文章二维码