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Abstract The Mandarin Chinese language is known to be strongly influenced by a rich set of regional 
accents, while Mandarin speech with each accent is of quite low resource. Hence, an important task in 
Mandarin speech recognition is to appropriately model the acoustic variabilities imposed by accents. In this 
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1   Introduction

An important part of the Mandarin speech recogni-
tion task is to appropriately handle the influence 
from a rich set of diverse accents. There are at 
least seven major regional accents in China[1,2]. The 
related variabilities imposed on accented Mandarin 
speech are complex and widespread. The resulting 
high mismatch can lead to severe performance 
degradation for automatic speech recognition (ASR) 
tasks. To handle this problem, ASR systems can be 
trained on large amounts of accent specific speech 
data[3]. However, collecting and annotating accented 
data is very expensive and time-consuming. Hence, 

is often quite limited.
An alternative approach is to exploit the accent 

independent features among standard Mandarin 
speech data, which are often available in large 
amounts, to improve robustness and generalization. 
Along this line, two categories of techniques can be 

adapt systems trained on standard Mandarin speech 
data[4-8]. The second category uses standard Mandarin 
speech to augment the limited in-domain accent 

specific data in a multi-style training framework[9].
For example, an accent dependent phonetic decision 
tree tying technique was proposed[10-12]. It allows 
the resulting acoustic models to explicitly learn 

characteristics in speech. 
Recently, deep neural networks (DNNs) have 

become increasing popular for acoustic modelling, 
due to their inherent robustness to the highly 
complex factors of variabilities found in natural 
speech[13-15]. These include external factors such as 
environment noise[16-18] and language dependent 
linguistic features[19-21]. In order to incorporate 
DNNs, or multi-layer perceptrons (MLPs) in general, 
into hidden Markov model (HMM)-based acoustic 
models, two approaches can be used. The first 
uses a hybrid architecture that estimates the HMM 
state emission probabilities using DNNs[22]. The 
second approach uses an MLP or DNN[17], which is 
trained to produce phoneme posterior probabilities, 
as a feature extractor. The resulting probabilistic 
features[23] or bottleneck features[24] are concatenated 
with standard front-ends and used to train Gaussian 
mixture model (GMM)-HMMs in a tandem fashion. 

paper, an investigation of implicit and explicit use of accent information on a range of deep neural network 
(DNN) based acoustic modeling techniques was conducted. Meanwhile, approaches of multi-accent modelling 
including multi-style training, multi-accent decision tree state tying, DNN tandem and multi-level adaptive 
network (MLAN) tandem hidden Markov model (HMM) modelling were combined and compared. On a 
low resource accented Mandarin speech recognition task consisting of four regional accents, an improved 

outperformed the baseline accent independent DNN tandem systems by 0.8%-1.5% absolute (6%-9% relative) 
in character error rate after sequence level discriminative training and adaptation.

Keywords speech recognition; decision tree; deep neural network; accent; adaptation
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the tandem approach requires minimum change to 
the downstream techniques, such as adaptation and 
discriminative training, while retaining the useful 
information by the bottleneck features.

Using limited amounts of accented data alone is 
insufficient to obtain sufficient generalization for 
the resulting acoustic models, including DNNs. 
Therefore, a key problem in accented Mandarin 
speech recognition with low resources, as considered 
in this paper, is how to improve coverage and 
generalisation by exploiting the commonalities and 
specialties among standard and accented speech data 
during training. Using conventional multi-style DNN 
training based on a mix of standard and accented 
Mandarin speech data, accent independent features 
found in both can be implicitly learned[25,26].

Inspired by recent works on multi-lingual low 
resource speech recognition[19,20,21,27], this paper aims 
to investigate and compare the explicit as well as 
the implicit uses of accent information in state-of-
the-art deep neural network (DNN) based acoustic 
modelling techniques, including conventional tied 
state GMM-HMMs, DNN tandem systems and 
multi-level adaptive network (MLAN)[27,28] tandem 
HMMs. These approaches are evaluated on a low 
resource accented Mandarin speech recognition 
task consisting of accented speech collected from 
four regions: Guangzhou, Chongqing, Shanghai 
and Xiamen. The improved multi-accent GMM-
HMM and MLAN tandem systems explicitly 
leveraging the accent information during model 
training significantly outperformed the baseline 
GMM-HMM and DNN tandem HMM systems by 
0.8%-1.5% absolute (6%-9% relative) in character 
error rate after minimum phone error (MPE) based 
discriminative training and adaptation.

The rest of this paper is organized as follows. 
Standard acoustic accent modelling approaches are 
reviewed in section 2. These include multi-accent 
decision tree state tying for GMM-HMM systems, 
and multi-accent DNN tandem systems. MLAN 
tandem systems with improved pre-training for accent 
modeling are presented in section 3.2. Experimental 
results are presented in section 4. Section 5 draws the 
conclusions and discusses future work.

2 Acoustic modelling for accented speech

2.1 Multi-style accent modelling

Multi-style training[9] is used in this paper for accent 
modelling. This approach uses speech data collected 
in a wide range of styles and domains. Then, it 
exploits the implicit modelling ability of mixture 
models used in GMM-HMMs and, more recently, 
deep neural networks[16,20,21] to obtain a good 
generalization to unseen situations. In the accented 
speech modelling experiments of this paper, large 
amount of standard Mandarin speech data is used to 
augment the limited accented data during training to 
provide useful accent independent features.

2.2 Multi-accent decision tree state tying

As the phonetic and phonological realization of 
Mandarin speech is significantly different between 
regional accents, inappropriate tying of context 
dependent HMM states associated with different 
accents can lead to poor coverage and discrimination 
for GMM-HMM based acoustic models. In order 
to handle this problem, decision tree clustering[10, 11]

with multi-accent branches is tried in this paper. 
In order to effectively exploit the commonalities 
and specificities found in standard and accented 
Mandarin data, accent dependent (AD) questions are 
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used together with conventional linguistic questions 
during the clustering process. A sample of the 
accented branches is shown in red part of Fig. 1.

R_Tone 3

R_Tone 3
R_Rounded
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R_low
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AD_G

Fig. 1 A part of multi-accent decision tree. Blue:

conventional branches; Red: accented branches

In common with standard maximum likelihood 
(ML) based phonetic decision tree tying[13], the 
questions giving highest log-likelihood improvement 
are chosen when splitting tree nodes. The algorithm 
iterates until no more splitting operations can yield 
a log-likelihood increase above a certain threshold. 
Therefore, the multi-accent information is explicitly 
used during states tying. As expected, the use of 
accent dependent questions dramatically increases the 
number of context-dependent phone units to consider 
during training and decoding. As not all of them 
are allowed by the lexicon, following the approach 
proposed in Liu's report[29], only the valid subset under 
the lexical constraint is considered in this paper.

2.3 Multi-accent DNN tandem systems

In this paper, DNNs are trained to extract bottleneck 
features to be used in both DNN tandem and MLAN 
tandem systems. They are trained to model frame 
posterior probabilities of context-dependent phone 

HMM state targets. The inputs to DNNs consist of a 
context window of 11 successive frames of features 
for each time instance. The input to each neuron 
of each hidden layer is a linearly weighted sum of 
the outputs from the previous layer, before fed into 
a sigmoid activation function. At the output layer 
a softmax activation is used to compute posterior 
probability of each output target. The networks 
were first pre-trained by layer-by-layer restricted 
Boltzmann machine (RBM) pre-training[14,15], then 
globally fine-tuned to minimize the frame-level 
cross-entropy by back-propagation. Moreover, the 

number of neurons[24]. This narrow layer introduces 
a constriction in dimensionality while retaining the 
information useful for classification. Subsequently, 
low dimensional bottleneck features can be extracted 
by taking neuron values of this layer before 
activation. The bottleneck features are then appended 
to the standard acoustic features and used to train the 
back-end GMM-HMMs in tandem systems.

3 Multi-accent MLAN tandem systems

3.1 Multi-level adaptive network tandem systems

A multi-level adaptive network (MLAN) was first 
proposed for cross domain adaptation[27,28], where 
large amounts of out-of-domain telephone and 
meeting room speech were used to improve the 
performance of an ASR system trained on a limited 
amount of in-domain multi-genrearchive broadcast 
data. The MLAN approach explored the useful 
domain independent characteristics in the out-
of-domain data to improve in-domain modelling 
performance, while reducing the mismatch across 
different domains. In this paper, the MLAN approach 
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was further exploited to improve the performance of 
accented Mandarin speech recognition systems.

An MLAN system consists of two component 
subnetworks. The first-level network is trained 
with acoustic features of large amounts of accent 
independent standard Mandarin speech data. The 
acoustic features of target accented speech data are 

resulting bottleneck features are then concatenated 
with the associated standard acoustic features and 
used as input to train the second-level network. 
After both of two component networks are trained, 
the entire training set, including both standard and 
accented Mandarin speech data, is fed forward 
through two subnetworks in turn. The resulting set 
of bottleneck features are then concatenated with the 
standard front-ends and used to train the back-end 
GMM-HMMs.

3.2 Improved MLAN tandem systems for accent 

  modelling

The MLAN framework can be considered as stacked 
DNNs that consists of multi level of networks[21,20].
The second level network of stacked DNNs uses the 
information of first level network only in the input 
features, while weights and biases in the second level 
network are randomly initialized before pre-training 
and training. One important issue associated with 
conventional MLAN systems is the robust estimation 
of the second level DNN parameters. When using 

data to adapt the second level DNN, as is considered 
in this work, a direct update of its associated weight 
parameters presents a significant data sparsity 
problem and can lead to poor generalization 
performance[21,25,26]. In order to address this issue, an 
improvement form of pre-training initialization is 

used in this paper for the second level DNN.
First, all the hidden layers parameters of the 

second level accent adaptive DNN, and its input 
layer parameters associated with the standard 
acoustic features (shown as red and orange parts 
in Fig. 2) are initialized using those of the first 
level DNN trained on sufficient amounts of accent 
independent speech data. Second, the remaining 
input layer weights and biases connecting the input 
bottleneck features generated from first level DNN 
are initialized using RBM pre-training (shown as 
green in Fig. 2).

output layer output layer

bottleneck
layer

bottleneck
layer

acoustic features acoustic featuresbottleneck features

Fig. 2 Improved MLAN training for tandem systems. Left:

rst level DNN network; Right: second level DNN network

When training the second level DNN, the 
parameters between bottleneck layer and output 
layer are updated first (shown as blue in Fig. 2), 
while fixing the rest of the second level network. 
The entire second level network is then globally 
fine-tuned using back-propagation. Similar to the 
multilingual DNN adaptation approach investigated 
in Grezl’s report[21], the proposed method aims to 
adapt the second level network parameters based on 

4 Experiments and results

4.1 Data description

In this section the performance of various accented 
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Mandarin speech recognition approaches are 
evaluated. 43 hours of standard Mandarin speech[30]

and 22.6 hours of accented Mandarin speech 
containing Guangzhou, Chongqing, Shanghai and 
Xiamen regional accents[31] released by CASIA 
and RASC863 databases respectively were used in 
training. Four testing sets associated with each of 
these four accents respectively were also used. More 
detailed information of these data sets was presented 
in Table 1.

4.2 Experiment setup

Baseline context-dependent phonetic decision 
tree clustered[13,32] triphone GMM-HMM systems 
with 16 Gaussians per state were trained using 
42 dimensional acoustic features consisting of 
heteroskedastic linear discriminant analysis (HLDA) 
perceptual linear predictive (PLP) features and 
pitch parameters. These were used as the input 
features, and to produce accent independent state 
level alignment to train DNNs with 2 048 neurons 
in each non-bottleneck hidden layer using the Kaldi 
toolkit[33]. Meanwhile the bottleneck layer had 26 
neurons. All DNNs were trained with initial learning 

rate of 0.008 and the commonly used new bob 
annealing schedule. Mean normalization and principle 
component analysis (PCA) de-correlation were 
applied to the resulting bottleneck features before 
being appended to the above acoustic features.

4.3 Performance of multi-accent GMM-HMM

  systems

The performance of multi-accent GMM-HMM 
systems were first evaluated on Guangzhou accented 
speech data. These are shown in Table 2. In this 
table, the “Model AD” column denotes accent 
dependent questions were used in decision tree state 
tying. This table shows that the multi-accent HMM 
model (System (2)) trained by adding all four types 
of accented speech to the standard Mandarin data 
outperformed folding in Guangzhou accent data only 
(System (1)). In addition, the explicit use of accent 
information during decision tree clustering (System (3)) 
obtained a further character error rate (CER) reduction 
of 2.7% absolute from 17.77% down to 15.07%.

4.4 Performance of multi-accent DNN tandem

  systems

A second set of experiments comparable to those 

Table 1 Standard and accented Mandarin speech data sets

Table 2 Performance of baseline GMM-HMM systems trained on standard Mandarin speech plus Guangzhou accent data 

only, or all four accents of Table 1, and evaluated on Guangzhou accent test set



32

shown in Table 2 were then conducted to evaluate 
the performance of four tandem systems on the 
Guangzhou accent test set. In addition to the 
standard Mandarin speech data, the Guangzhou 
accent data, or all four accent types, were also used 
in DNN training. All DNNs here had 4 hidden layers 
including the bottleneck layer. These are shown 
in Table 3. The multi-accent trained DNN tandem 
system (System (4) in Table 3), which used both 
accent dependent questions in decision tree based 
HMM state clustering, and included all four accent 
types in DNN training, gave the lowest character 
error rate of 13.16%.

4.5 Performance of multi-accent MLAN tandem

  systems

The performance of various MLAN tandem systems 
on Guangzhou accent speech data are shown in 
Table 4. In addition to the standard Mandarin 
speech data, all four accent types were used in both 

first level DNN had 4 hidden layers. The first four 
MLAN tandem systems used a conventional random 

initialization of the second level DNN with 2 or 4 
hidden layers prior to pre-training and full network 
update on the target accent data. As discussed in 
sections 1 and 3.2, when using limited amounts of 
accent specific speech data to estimate the second 
level DNN, a direct update its associated weight 
parameters can lead to unrobust estimation and 
poor generalization. This is shown in the first four 
lines of Table 4. Increasing the number of hidden 
layers from 2 to 4 for the second level DNN led to 
further performance degradation. Compared with 
the best DNN tandem system shown in the bottom 
line of Table 3, a performance degradation of 0.92% 
absolute was observed.

In contrast, when the improved pre-training based 
MLAN tandem system discussed in section 3.2 
was used, as shown in the last two rows in Table 
4, consistent improvements were obtained using 
both the accent independent and dependent MLAN 

tandem systems shown in the last two rows of 
Table 3.

Table 3 Performance of DNN tandem systems on Guangzhou accent test set

Table 4 Performance of MLAN tandem systems on Guangzhou accent test set
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4.6 Performance evaluation on multiple accent 

  test sets

A full set of experiments were finally conducted 
to evaluate the performance of various multi-
accent systems on four accent test sets: Guangzhou, 
Chongqing, Shanghai and Xiamen. The performances 
of systems are presented in Table 5 and Table 6 for 
the multi-accent GMM-HMM, DNN tandem and 
improved MLAN tandem systems. “ MPE” denotes 
MPE discriminative training[34] performed on the 
maximum likelihood trained “ML” model, and “
MLLR” denotes a subsequent maximum likelihood 
linear regression (MLLR) adaptation[35] on the “
MPE” model. Moreover, System (0) used only out of 
domain data, namely standard Mandarin data, to train 
the GMM-HMMs, which denoted by “HMM(out)”. 
Meanwhile, “HMM(ma)” denotes multi-accent GMM-
HMM systems trained with all accented data as 
well as standard Mandarin data. Both DNN tandem 
and improved MLAN tandem systems utilized 

“HMM(ma) ML” models as their baselines. All DNNs 
here had 6 hidden layers including the bottleneck 
layer. “DNN AD” denotes DNN trained with accent 
dependent state alignment, while all DNNs used in 
MLAN tandem systems were trained with accent 
independent state alignment.

A general trend can be found in Table 5 and 6 that 
the explicit use of accent information in training lead 
to consistent improvements for GMM-HMM, DNN 
tandem and MLAN tandem systems. For example, 
by explicitly using accent information during model 
training, an absolute CER reduction of 1.5% (relative 
9%) was obtained on the GMM-HMM systems 
(System (2) compared to System (1) in Table 5). 
Although the improved MLAN tandem systems 
got less improvement from MPE training than the 
DNN tandem systems, they got more significant 
amelioration when MLLR adaptation was utilized. 
This indicates that the improved MLAN framework 
is not exclusive to the MLLR adaptation. The best 

Table 5 Performance of baseline multi-accent GMM-HMM and DNN tandem systems evaluated on all four accent test sets
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performance was obtained using the improved 
MLAN tandem system with accent dependent 
modelling (System (4) in Table 6). Using this 
improved MLAN tandem system, an average CER 
reduction of 0.8% absolute (6% relative ) was obtained 
over the baseline DNN tandem system trained 
without explicitly using any accent information 
(System (3) in Table 5).

Comparing the results to previous works evaluated 
also on RASC863 database, Zhang et al.[36,37] used 
the augmented HMM and dynamic Gaussian mixture 
selection (DGMS), instead of multi-style accent 
modelling HMM and multi-accent decision tree 
state tying used in this paper. Their error rate for 
Guangzhou (Yue), Chongqing (Chuan) and Shanghai 
(Wu) accented Mandarin ASR stayed above 40% 
in syllable level (SER), and the best relative SER 
reduction against HMM trained with standard 
Mandarin (Putonghua) was about 20%. Although 
SER is not directly comparable to CER, but can still 
be seen as a reference. Meanwhile, for these three 
accents the comparable HMM system in this paper 

(System (2) in Table 5) obtained ML CER of about 
18%, which had relative reduction of more than 
40% against system (0) in Table 5. It might because 
that information of standard Mandarin cannot 
complement the low resource accented Mandarin in 
the augmented HMM and DGMS approaches.

5 Conclusions

In this paper, implicit and explicit accent modeling 
approaches were investigated for low resource 
accented Mandarin speech recognition. The 
improved multi-accent GMM-HMM and MLAN 
tandem systems significantly outperformed the 
baseline GMM-HMM and DNN tandem HMM 
systems by 0.8%-1.5% absolute (6%-9% relative) 
in character error rate after MPE training and 
adaptation. Experimental results suggest the 
proposed techniques may be useful for accented 
speech recognition. Future work will  focus 
on modelling a larger and more diverse set of 
accents.

Table 6 Performance of improved MLAN tandem systems evaluated on all four accent test sets
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