高级检索

异构大数据编程环境 Hadoop+

Hadoop+: A Big-data Programming Framework for Heterogeneous Computing Environments

  • 摘要: 互联网和物联网技术的飞速发展开启了“大数据”时代。目前, 硬件的高速发展催生了许多异构芯片, 它们越来越多地出现在大规模数据中心里, 支持不同的应用程序, 在提升性能的同时降低整体功耗。文章重点介绍了基于 MapReduce 编程模型的 Hadoop+ 框架的设计与实现, 它允许用户在单个任务中调用 CUDA/OpenCL 的并行实现, 并能通过异构任务模型帮助用户。在我们的实验平台上, 五种常见机器学习算法使用 Hadoop+ 框架相对于 Hadoop 能达到 1.4×~16.1×的加速比, 在 Hadoop+框架中使用异构任务模型指导其资源分配策略, 对单个应用负载上最高达到 36.0% 的性能提升;对多应用的混合负载, 最多能减少 36.9%, 平均 17.6% 的应用执行时间。

     

    Abstract: The rapid development of Internet and Internet of Things opens the era of big data. Currently, heterogeneous architectures are being widely adopted in large-scale datacenters, for the sake of performance improvement and reduction of energy consumption. This paper presents the design and implementation of Hadoop+, a programming framework that implements MapReduce and enables invocation of parallelized CUDA/OpenCL within a map/reduce task, and helps the user by taking advantage of a heterogeneous task model. Experimental result shows that Hadoop+ attains 1.4× to 16.1× speedups over Hadoop for five commonly used machine learning algorithms. Coupled with a heterogeneous task model that helps allocate computing resouces, Hadoop+ brings a 36.0% improvement in data processing speed for single-application workloads, and for mixed workloads of multiple applications, the execution time is reduced by up to 36.9% with an average 17.6%.

     

/

返回文章
返回