A Self-Perception High-Dimensional Chaotic Particle Swarm Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To avoid the premature convergence and enhance the search capability of the high-dimensional space, a novel self-perception high-dimensional chaotic particle swarm algorithm was presented. Firstly, a double perturbation of pBest and gBest was used to enhance the searching capability of particles. Secondly, self-perception approach was proposed to help the particle swarm to avoid the premature convergence. Lastly, three discrete PSO variants were tested on the traveling salesman problem (TSP). Experimental results show that the self-perception high-dimensional chaotic particle swarm algorithm is simple, effective and promoting in a high-dimensional space.

    Reference
    Related
    Cited by
Get Citation

TAO Qian, HUANG Zhexue, GU Chunqin. A Self-Perception High-Dimensional Chaotic Particle Swarm Algorithm[J]. Journal of Integration Technology,2014,3(3):15-21

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 07,2015
  • Published:
Article QR Code