Acceleration Performance Optimization and Regenerative Braking Control for Battery Electric Bus Based on Fuzzy Logic Algorithm
Author:
Affiliation:

Funding:

Ethical statement:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Increasingly serious environmental problems have prompted the city traffic to the clean, efficient and sustainable directions, and have also accelerated the popularization and applications of the new energy transport technology. With the development of the battery and motor drive technology, battery electric buses have drawn extensive concerns. Starting acceleration performance and regenerative braking capability are two advantages of battery electric bus compared to traditional vehicles. Because of quick responses of the accelerator pedal signal and drive motor, the acceleration performance of battery electric bus is superior to the traditional diesel bus theoretically. The regenerative braking is an important technique to save energy consumption and extend the drive range. In this paper, based on the fuzzy logic algorithm, we designed a driving torque control strategy for decreasing the starting acceleration time. Meanwhile, the regenerative braking control strategy is reported. The results show that, the driving torque control strategy can decrease acceleration time and the regenerative braking strategy can save energy consumption by 11% during the Chinese city bus driving cycles.

    Reference
    Related
    Cited by
Get Citation

HU Jianyao, WU Zhengbin, DENG Xianquan, QUAN Songhua. Acceleration Performance Optimization and Regenerative Braking Control for Battery Electric Bus Based on Fuzzy Logic Algorithm[J]. Journal of Integration Technology,2015,4(1):16-24

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 28,2015
  • Published: