Genome-Wide Association Study of Cardiovascular and Cerebrovascular Diseases Based on Multi-Step Screening
Author:
Affiliation:

Funding:

Ethical statement:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Genome-wide association study (GWAS) is an effective method to study genetic variants associated with complex diseases or traits. Marginal statistical test is the common method of GWAS, however there following weakness such as lack of consideration of correlation between the features and unstable threshold selection. In this paper, we discuss a new method of GWAS based on multi-step tests model for cardiocerebrovascular disease. The method can be divided into the following two steps: Gini index is used for first step feature selection to achieve a subset of single-nucleotide polymorphisms (SNPs), and then random forest recursive cluster elimination (RF-RCE) filters the associated SNPs subset from first-step candidate SNP set. Experiment results show that the multi-step feature selection is better than the single-step feature selection, and the selected SNPs are more suitable for cardio-cerebrovascular disease prediction.

    Reference
    Related
    Cited by
Get Citation

HU Yishen, ZHU Muchun, YIN Peng. Genome-Wide Association Study of Cardiovascular and Cerebrovascular Diseases Based on Multi-Step Screening[J]. Journal of Integration Technology,2019,8(5):72-85

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 09,2019
  • Published: