Research Progress on Self-Powered Implantable Energy Harvesting Devices
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Implanted medical electronics (IMEs) is essential for healthcare and treatment. Battery is usually applied in the sustainable operation of IMEs. However, once these batteries finished their mission, the patients had to undergo a second operation to remove them and bear considerable financial burdens as well as severe pain. The human body abounds with mechanical and chemical energy, such as the heartbeat, breathing, blood circulation, and the oxidation-reduction of glucose. With the development of self-powered energy harvesting technology, the collected energy could be applied in powering IMEs. In this context, self-powered implantable energy harvesters (IEHs) based on the piezoelectric effect, triboelectric effect, photoelectric effect, pyroelectric effect, automatic wristwatch devices, biofuel cells and endocochlear potential were prepared. Here, this review article focuses on the classification and typical applications of self-powered IEHs. Furthermore, the current challenges and perspectives are also discussed.

    Reference
    Related
    Cited by
Get Citation

LI Zhou, LI Zhe, LIU Ruping. Research Progress on Self-Powered Implantable Energy Harvesting Devices[J]. Journal of Integration Technology,2020,9(1):12-27

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 17,2020
  • Published:
Article QR Code