Abstract:In this work, microfiltration membrane were prepared using polyvinylidene fluoride (PVDF) and N,N-dimethyl acetamide as the solvent via non-solvent induced phase separation technique. The effects of types and loading amounts of the non-solvent additives, pre-evaporation time and relative humidity on the membrane structure, pure water permeance and surface hydrophilicity/hydrophobicity were investigated. It was found that hydrophobic PVDF microfiltration membrane with large pore size and high permeance could be obtained by adding isopropanol (w=16%) and glycerol (w=6%) in the dope solution (w(PVDF)=16%), followed by evaporation for 4 min at relative humidity of 80% before being immersed in water. The PVDF membrane possessed a completely open surface and supporting layer with interconnected sponge-like porous structure. The prepared PVDF membrane showed high pure water flux of (8 650.74±305.29) L/(m2·h) after pre-wetting and 200 nm-polystyrene-microspheres rejection of more than 99%. In addition, the PVDF microfiltration membrane was hydrophobic with water contact angle of (122±3)°, which make the membrane as a promising candidate used for gas sterilization in the bio-pharmaceutical manufacturing process.