Abstract:This paper presents a design of single-joint biomimetic robotic fish with compact structure and high swimming efficiency. It allows for convenient disassembly and assembly of pectoral fins, pelvic fins, and caudal fins. The influence of pectoral and pelvic fins on swimming performance was studied via underwater experiments. In the prototype swimming tests, a "binocular vision system" for tracking and recording the motion of the robotic fish was constructed using a high-speed camera and a flat mirror. It enabled tracking and recording of the three-dimensional position information of two marked points on the foremost end of the fish head and above its center of mass. This system provided data support for the quantitative analysis of the swimming performance, posture changes, and head stability of the robotic fish. The results indicated that the robotic fish have good performance in linear propulsion and turning. In the stability experiments, the head stability of the robotic fish equipped with pectoral fins and pelvic fins is better during low-frequency swimming. But no advantage is shown during high-frequency swimming, which is consistent with the phenomenon of various fins of fish in the natural environment being close to the body during high-frequency swimming except for the caudal fin.