YOLO-PointMap: Real-time human back acupoint recognition based on lightweight dynamic feature fusion
CSTR:
Author:
Affiliation:

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Clc Number:

TP399

Fund Project:

The National Natural Science Foundation of China,The National Key Technologies R&D Program of China,Shenzhen Science and Technology Program,Shenzhen Engineering Laboratory for Diagnosis & Treatment key technologies of interventionalsurgical robots

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As a vital part of traditional Chinese medicine, acupuncture has broad global applications. However, the reliance on practitioners'' experience for acupoint localization in traditional acupuncture methods leads to a lack of standardization, restricting its reproducibility and broader adoption. Acupuncture robots, as intelligent medical devices, offer new opportunities for standardizing and promoting acupuncture techniques. This paper introduces an improved YOLOv8-Pose model, YOLO-PointMap, designed to address challenges in dense acupoint distribution and weak feature recognition. By incorporating dynamic convolution to optimize the C2f module and introducing a channel-attention-based feature fusion module, the model achieves significant advancements in multi-scale feature extraction and integration. Experimental results show that the EPE, PCK and mAP50-95 (Pose) indexes of YOLO-PointMap on the test set are superior to the existing methods, with the values reaching 3.27, 1 and 84.9% respectively, especially in dense key point identification and weak feature region localization. It provides strong support for the development of acupuncture robot technology, and shows the potential application value in the fields of virtual reality and intelligent interaction.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 29,2024
  • Revised:December 17,2024
  • Adopted:December 27,2024
  • Online: January 03,2025
  • Published:
Article QR Code