基于互信息准则的图像平滑和分割
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Image Denoising and Segmentation Based on Mutual Information Criterion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在计算机视觉领域,尺度空间扮演着一个很重要的角色。多尺度图像分析的基础是自动尺度选择,但它 的性能非常主观和依赖于经验。基于互信息的度量准则,文章提出了一种自动选取最优尺度的模型。首先,研究 专注于基于形态学算子的多尺度图像平滑去噪方法,这种技术不需要噪声方差的先验知识,可以有效地消除照度 的变化。其次,通过递归修剪 Huffman 编码树,设计了一个基于聚类的无监督图像分割算法。一个特定的聚类数 从信息理论的角度来看,提出的聚类算法可以保留最大的信息量。最后,用一系列的实验对算法的性能进行了验证, 并从数学上进行了详细的证明和分析,实验结果表明本文提出的算法能获得最优尺度的图像平滑和分割性能 。

    Abstract:

    Scalespace play an important role in many computer vision tasks. Automatic scale selection is the foundation of multi-scale image analysis, but its performance is still very subjective and empirical. To automatically select the appropriate scale for a particular application, a scale selection model based on information theory was proposed in this paper. The proposed model utilizes the mutual information as a measuring criterion of similarity for the optimal scale selection in multi-scale analysis, with applications to the image denoising and segmentation. Firstly, the multi-scale image smoothing and denoising method based on the morphological operator was studied. This technique does not require the prior knowledge of the noise variance and can effectively eliminate the changes of illumination. Secondly, a clusteringbased unsupervised image segmentation algorithm was developed by recursively pruning the Huffman coding tree. The proposed clustering algorithm can preserve the maximum amount of information at a specific clustering number from the information-theoretical point of view. Finally, for the feasibility of the proposed algorithms, its theoretical properties were analyzed mathematically and its performance was tested through a series of experiments, which demonstrate that it yields the optimal scale for the developed image denoising and segmentation algorithms.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
温铁祥,潘正洋,辜 嘉.基于互信息准则的图像平滑和分割 [J].集成技术,2014,3(1):55-67

Citing format
WEN Tiexiang, PAN Zhengyang, GU Jia. Image Denoising and Segmentation Based on Mutual Information Criterion[J]. Journal of Integration Technology,2014,3(1):55-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-24
  • 出版日期:
文章二维码