深圳地区日极值气温的降尺度研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

深圳市科技研发资金项目(JCYJ20120617115926138)


A Downscaling Study on the Daily Temperature Extremums in Shenzhen
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    气象与人类日常生活的关系十分密切,气象预报一直是人类社会高度关注的问题。随着经济的发展和社 会的进步,人类对天气预报的准确性提出了越来越高的要求,迫切希望实现气象要素精细化预报。获取详细准确的 区域气象资料是实现气象精细化预报的首要条件,全球大气环流模式是目前预估大尺度未来全球气候变化最重要 的模式,能较好地模拟出大尺度的平均特征。但是模式预报输出的空间分辨率较低,无法获取精细的区域气象资料, 很难对区域天气情景变化做出详细的预测,而降尺度方法可用于弥补这方面的缺陷。文章的研究工作主要是利用 统计降尺度的多元线性回归方法和 BP 神经网络方法对深圳地区近十年的日最低温度和最高温度进行降尺度分析研 究。采用的数据是美国国家环境预报中心/ 美国国家大气研究中心提供的 FNL 全球分析资料和深圳国家基本观测 站——竹子林站的实际观测数据,重点研究了基于 BP 神经网络方法和多元线性回归方法的统计降尺度模型的设计 与实现过程,并对两种方法的结果进行了比较,为区域站点的统计降尺度应用提供了设计方法和参考。

    Abstract:

    The weather has a profound influence on human’s daily life and the weather forecasting has always been a topic of great concern. With the economic development and social progress, people’s requirements for daily weather forecasting has become higher and higher. Information provided by the general circulation models (GCMs) can describe well some of the weather parameters at a large scale, but GCMs fail to provide detailed weather information at a regional or local scale for impact assessment studies. Outputs from GCMs are usually of low spatial resolutions. A common approach to bridge the scale mismatch is downscaling. In the present study, two methods, i.e., the statistical multiple linear regression and the BP neural network, were proposed to downscale large scale reanalysis data to daily temperature extremums at a local point, Shenzhen national meteorological station. The data used in this study are NCEP/NCAR (National Centers for Environmental Prediction/National Centre for Atmospheric Research) reanalysis dataset for the 2000~2012 period and daily observations of maximum temperature and minimum temperature at Shenzhen station for the same period. The two methods were compared in this study. Results show that both methods can simulate well the daily temperature extremums at Shenzhen station, but the performance of the statistical downscaling method is more stable than the BP neural network.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
武 杨,李晴岚.深圳地区日极值气温的降尺度研究 [J].集成技术,2014,3(2):53-67

Citing format
WU Yang, LI Qinglan. A Downscaling Study on the Daily Temperature Extremums in Shenzhen[J]. Journal of Integration Technology,2014,3(2):53-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-04-01
  • 出版日期:
文章二维码