基于用户特征聚类联合情境特征的多维度应用推荐系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国科学院中亚生态与环境研究中心项目(RCEECA-2018-001);广东省重点领域研发项目(2020B010164003, 2019B010137002);国家自然科学基金面上项目(61672513)


A Multidimensional Application Recommender System Based on User Feature Hierarchical Clustering with User Behaviour Information
Author:
Affiliation:

Fund Project:

Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences (RCEECA-2018-001), Key-Area Research and Development Program of Guangdong Province (2020B010164003, 2019B010137002), and National Natural Science Foundation of China (61672513)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着移动设备的普及、同时大数据时代数据过载问题的日益严重,如何更准确地根据用户的兴趣及行为向用户推荐其可能感兴趣的应用软件成为亟待解决的问题。现有的推荐系统方法大多面临着推荐内容较为单一乏味等问题,且在推荐时没有将用户所处情境加以考虑,导致推荐效果欠佳。该文提出一种基于用户特征聚类联合情境特征的多维度应用推荐系统。经奇异值分解降维并去噪后的用 户特征数据会被层次聚类为多个用户组,之后与用户所处情境信息联合输入至贝叶斯模型,得到应用推荐准确概率的降序推荐列表,从而实现更加准确的应用推荐。该文在分布式框架下实现了所提出的推荐系统,使其运行高效可靠。经验证,经过奇异值分解处理后的数据组内平均差值降低至 0.4,聚类 后得到的应用推荐召回率提升至 73%,较基于用户协同过滤与基于关联规则的方法有 5%~16% 的显著 提升,且贝叶斯模型的量化指标均有约 10% 的提升,充分验证了所提出算法及系统的有效性。

    Abstract:

    With the prevalence of mobile devices and the gradually severe information overloading in big data era, how to accurately recommend apps to users based on their interests and their user behaviours becomes an important problem. Most existing recommender systems suffer from common weaknesses such as making recommendations that are too dull and lacking diversity, and they also rarely consider the user behaviours when making recommendations, resulting in sub-optimal recommendation performance. In this paper, we propose a multi-dimensional app recommender system that takes both the hierarchically clustered user features and user behaviours into account when making recommendations. After being processed by singular value decomposition (SVD) that performs denoising and dimensionality reduction, the user features are then clustered into several user groups by the hierarchical clustering. The user behaviour information is subsequently leveraged together with the user features and inputted into the Bayesian model to produce an app recommendation list in the descending order of the probability of being accurate. Hence, the accuracy of the app recommendation is improved. This paper finally implements the proposed recommender system under a distributed framework, which ensures the efficiency and the reliability of the system. The experiments demonstrate an average within-group deviation of 0.4 after the SVD is applied. The recall of the app recommender system after the hierarchical clustering raises to 73%, which shows a 5%~16% performance boost compared with collaborative-filtering-based and association-rule-based methods. All evaluation metrics of the Bayesian model also presents a performance gain of around 10%, which verifies the effectiveness of the proposed recommender system.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
吴嘉澍,饶华枭,范小朋,等.基于用户特征聚类联合情境特征的多维度应用推荐系统 [J].集成技术,2021,10(3):22-34

Citing format
WU Jiashu, RAO Huaxiao, FAN Xiaopeng, et al. A Multidimensional Application Recommender System Based on User Feature Hierarchical Clustering with User Behaviour Information[J]. Journal of Integration Technology,2021,10(3):22-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-26
  • 出版日期:
文章二维码