注意力机制在单图像超分辨率中的分析研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research of Single Image Super Resolution Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于卷积神经网络的单图像超分网络性能已经远超传统算法,为进一步提升网络表征能力及网络性能,许多研究在网络架构中使用了注意力机制。该文首先回顾注意力机制在单图像超分中的研究,并将其划分为基于一阶注意力机制和基于高阶注意力机制两类方法;然后,对比基于注意力机制的超分网络在网络规模、内存占用、计算量、网络损失类型和注意力机制架构差异,验证了不同注意力机制模块的性能差异,并使用最新的超分可视化分析工具为实验提供侧面证明;最后,分析和讨论基于注意力机制的算法研究在处理真实退化图像方面存在的挑战,指出超分技术发展的关键瓶颈及未来发展方向。

    Abstract:

    CNN-based methods have achieved notable performance in the research of single image super resolution domain. To further improve the representation ability and performance of networks, most research works have adopted the attention mechanism. In this survey, we introduce a taxonomy for the attention based super-resolution networks and classify existing methods into two categories: first-order and secondorder attention. We also provide comparisons between the models in terms of network scale, memory footprint, type of network losses and important architectural differences for attention implementation. An analysis tool from recent network interpretation works is applied to verify the improvements of the evolving attention mechanism. Finally, we analyze and discuss challenges in processing real degraded images, and point out the problems and potential topics in future research work.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
李哲远,陈翔宇,乔宇,等.注意力机制在单图像超分辨率中的分析研究 [J].集成技术,2022,11(5):58-79

Citing format
LI Zheyuan, CHEN Xiangyu, QIAO Yu, et al. Research of Single Image Super Resolution Based on Attention Mechanism[J]. Journal of Integration Technology,2022,11(5):58-79

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-21
  • 出版日期:
文章二维码