Abstract:3D printing technology has been widely applied in aerospace, military, robotics and many other fields. However, some problems need to be solved, such as stacking error caused by the stair-stepping effect, anisotropy of printing parts caused by the 2.5D manufacturing principle, and time-consuming and energy consumption caused by printing and post-processing supporting structure. This paper studies the 3D printing method of rotary surface, carries out the innovative design research of multi-degree of freedom rotary 3D printing equipment, determines the printer’s structural parameters based on dimension design, and puts forward the path planning methods for curved layer printing. This paper verifies the correctness of type synthesis and dimension design of the 3D printing equipment through co-simulation and prototype experiments. Meanwhile, preliminary experimental research results show the feasibility of applying 3D printing equipment to curved layer printing from a qualitative point of view. Results of this study provide new ideas for innovative design methods of printing equipment, planning strategies for curved layer printing and related experimental research.