基于复合特征的高速网络视频流量识别方法
作者:
中图分类号:

TP393

基金项目:

国家重点研发计划项目(2021YFB3101403)


A Method for Identifying High-Speed Networks Video Traffic Based on Composite Features
Author:
Fund Project:

This work is supported by National Key Research and Development Program of China (2021YFB3101403)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    现有的视频流量识别方法主要针对特定平台,且大多需要捕获完整的流量,不适合高速网络管理。研究提出一种在采样后的高速流量中识别来自多个平台视频流量的方法。基于多个视频平台传输协议的普遍特性提取特征构建复合特征空间,并进一步处理这些特征,以消除采样对特征稳定性的影响,最后提取特征向量,并训练分类模型。研究使用带宽为 10 Gbps、采样率为 1∶32 的高速网络流量进行试验验证,结果表明:该方法可在高速网络中快速识别多平台的视频流量,且识别准确率大于 98%。

    Abstract:

    Existing methods for video traffic identification are mainly targeted at specific platforms and mostly require capturing full flows, which makes them unsuitable for high-speed networks management. This paper proposes a method for video traffic identification from multi-platforms in the sampled high-speed traffic.This paper analyze multiple video platform transmission protocols, extract features based on their common characteristics to construct a composite feature space, and further process these features to eliminate the effect of sampling on feature stability. Then, feature vectors are extracted and a classification model is trained. In the experiments, high-speed networks traffic with a bandwidth of 10 Gbps and a sampling rate of 1:32 was used. The results showed that the proposed method can quickly identify video traffic from multi-platforms with a precision of over 98%.

    参考文献
    [1] Sandvine. 2023 Global Internet Phenomena Report[J]. Internet Phenomena,(2023-01) [2023-02]. https://www.sandvine.com/global-internet-phenomena-report-2023
    [2] 潘吴斌, 程光, 郭晓军, 等. 网络加密流量识别研究综述及展望[J]. 通信学报, 2016, 37(9): 154-167.Pang WB, Cheng G, Guo XJ, et al. Review and perspective on encrypted traffic identification research [J]. Journal on Communications, 2016, 37(9): 154-167.
    [3] Kattadige C, Raman A, Thilakarathna K, et al. 360NorVic: 360-degree video classification from mobile encrypted video traffic[C]//Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. 2021: 58-65.
    [4] 熊刚, 孟姣, 曹自刚, 等. 网络流量分类研究进展与展望[J]. 集成技术, 2012, 1(1): 32-42.Xiong G, Meng J, Cao ZG et al. Research progress and prospects of network traffic classification[J]. Journal of Integration Technology, 2012, 1(1): 32-42.
    [5] Abu-El-Haija S, Kothari N, Lee J, et al. YouTube8M[DB/OL].(2019-06)[2023-01]. http://research.google.com/youtube8m/download.html
    [6] Wu Z, Dong Y, Qiu X, et al. Online multimedia traffic classification from the QoS perspective using deep learning[J]. Computer Networks, 2022, 204: 108716.
    [7] Sen S, Spatscheck O, Wang D. Accurate, scalable in-network identification of p2p traffic using application signatures[C]//Proceedings of the 13th international conference on World Wide Web. 2004: 512-521.
    [8] Aziz W A, Qureshi H K, Iqbal A, et al. Accurate Prediction of Streaming Video Traffic in TCP/IP Networks using DPI?? and Deep Learning[C]//2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020: 310-315.
    [9] Li F, Chung J W, Claypool M. Silhouette: Identifying youtube video flows from encrypted traffic[C]//Proceedings of the 28th ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video. 2018: 19-24.
    [10] 程光, 房敏, 吴桦. 面向移动网络的视频初始缓冲队列长度测量方法[J]. 通信学报, 2019, 40(10): 67-78.Cheng G, Fang M, Wu H. Measurement of video initial buffer size for mobile network [J]. Journal on Communication, 2019,40(10): 67-78.
    [11] Wu H S, Huang N F, Lin G H. Identifying the use of data/voice/video-based p2p traffic by dns-query behavior[C]//2009 IEEE International Conference on Communications. IEEE, 2009: 1-5.
    [12] Tang S, Li C, Qin X, et al. Traffic classification for mobile video streaming using dynamic warping network[C]//2019 28th Wireless and Optical Communications Conference (WOCC). IEEE, 2019: 1-5.
    [13] Yang L Y, Dong Y N, Tian W, et al. The study of new features for video traffic classification[J]. Multimedia Tools and Applications, 2019, 78: 15839-15859.
    [14] Liu Y, Li S, Zhang C, et al. Itp-knn: Encrypted video flow identification based on the intermittent traffic pattern of video and k-nearest neighbors classification[C]//Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part II 20. Springer International Publishing, 2020: 279-293.
    [15] Wang P, Guan X, Qin T. P2P traffic identification based on the signatures of key packets[C]//2009 IEEE 14th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks. IEEE, 2009: 1-5.
    [16] Shen M, Liu Y, Chen S, et al. Webpage fingerprinting using only packet length information[C]//ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 2019: 1-6.
    [17] Dubin R, Dvir A, Pele O, et al. I know what you saw last minute—encrypted http adaptive video streaming title classification[J]. IEEE transactions on information forensics and security, 2017, 12(12): 3039-3049.
    [18] Qin T, Wang L, Liu Z, et al. Robust application identification methods for P2P and VoIP traffic classification in backbone networks[J]. Knowledge-Based Systems, 2015, 82: 152-162.
    [19] Duan C, Gao H, Song G, et al. ByteIoT: A practical IoT device identification system based on packet length distribution[J]. IEEE Transactions on Network and Service Management, 2021, 19(2): 1717-1728.推荐评审专家:
    引证文献
引用本文

引文格式
乐 鑫,吴 桦,杨 骏,等.基于复合特征的高速网络视频流量识别方法 [J].集成技术,2024,13(5):19-29

Citing format
LE Xin, WU Hua, YANG Jun, et al. A Method for Identifying High-Speed Networks Video Traffic Based on Composite Features[J]. Journal of Integration Technology,2024,13(5):19-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-24
  • 最后修改日期:2024-01-24
  • 在线发布日期: 2024-09-24
文章二维码