基于 Android 智能手机内置传感器的人体运动识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Physical Activity Recognition Based on Android Smartphone
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章提出了一种利用智能手机的人体运动识别算法,将手机按使用者的习惯放置在任意的口袋中(对手机 的方向和位置没有任何限制)。利用手机内置的运动传感器采集人体的运动数据,然后将手机采集的数据在 WEKA 环境下进行特征值的挖掘,并利用其工具箱中的 J48 决策树、贝叶斯、序列最小优化 3 种分类器对实验者的数据集 进行离线分析,其中 J48 的分类精度最高达到了 90.7%。最后利用分类效果比较好的 J48 决策树,在手机上开发了 一种实时运动分类算法。

    Abstract:

    In this paper, built-in sensors were described to automatically detect human daily activities. In contrast to the previous work, this paper intends to recognize the physical activities when the phone’s orientation and position are varying. The data collected from six positions of seven subjects were investigated and two signals that are insensitive to orientation were chosen for classification. Decision trees (J48), Naive Bayes and sequential minimal optimization (SMO) were employed to recognize five activities: static, walking, running, walking upstairs and walking downstairs. The classification results of three classifiers were compared. The results demonstrates that the J48 classifier produces the best performance (average recognition accuracy: 90.7%). Then we chose the J48 classifier as online classifier.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
刘进磊,袁清珂,李 烨,等.基于 Android 智能手机内置传感器的人体运动识别 [J].集成技术,2014,3(3):61-67

Citing format
LIU Jinlei, YUAN Qingke, LI Ye, et al. Physical Activity Recognition Based on Android Smartphone[J]. Journal of Integration Technology,2014,3(3):61-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-07
  • 出版日期:
文章二维码