Abstract:Hypnosis is an effective psychological technology in respiratory motion control. In this study, functional magnetic imaging was applied to an intra-subject (n=13) design hypnosis experiment guided by hypnotists to analyze the respiratory motion control and neural activity in hypnosis. As a result, increased brain activities were observed in visual cortex, sensorimotor cortex, posterior cingulate cortex and middle temporal gyrus, and decreased in dorsolateral prefrontal cortex, cerebellum posterior lobe and supramarginal gyrus. Moreover, compared with normal state, enhanced correlation of brain activities (normal state, r=0.64; hypnosis state, r=0.80) was observed within large-scale resting-state networks. Increased connectivity between sensorimotor cortex and visual cortex in hypnosis was also observed, which implies their critical roles in neural mechanisms of hypnosis for respiration control and involvement of cognitive and perceptual processing therein. This study provides new insights for hypnosis study in psychology and cognitive neuroscience.